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• Meta assembly
• Comparative genomics

• Perspectives



Key Point

We observe the emergence of new type of 
methods for genome assembly based on 

multiple reference genomes in their 
phylogenetic context.



Sc
hu

st
er

, N
at

ur
e 

M
et

ho
ds

 2
00

8

Sequencing



Sc
hu

st
er

, N
at

ur
e 

M
et

ho
ds

 2
00

8

Sequencing

De Novo

Assembly

Contigs

Scaffolds

w/Reference
Genome



Sc
hu

st
er

, N
at

ur
e 

M
et

ho
ds

 2
00

8

Sequencing

De Novo

Assembly

Contigs

Scaffolds

w/Reference
Genome

Genome
Annotation

(Identification of features
such as genes, etc.)



Sc
hu

st
er

, N
at

ur
e 

M
et

ho
ds

 2
00

8

Sequencing

De Novo

Assembly

Contigs

Scaffolds

w/Reference
Genome

Genome
Annotation

(Identification of features
such as genes, etc.)

Phylogeny-
based



Sanger Sequencing

Alberts et al, Molecular Biology of the Cell, 2002, Garland Science, 4th Edition



Overview Next Gen.

“3rd Gen”

“2nd Gen”

Roche/454

Illumina/Solexa

AB Solid

Pacific Biosciences

Fuller et al. The challenges of sequencing by synthesis. Nat Biotechnol (2009) vol. 27 (11) pp. 1013-23

Helicos
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Read length vs. Cost

Rothberg and Leamon. The development and impact of 454 sequencing. Nat Biotechnol (2008) vol. 26 (10) pp. 1117-24



What is different?

• Much higher throughput / lower cost
• Sequence individual DNA fragments -> 

can deal with mixtures (environmental 
samples, etc.)

• Shorter reads

Mcpherson. Next-generation gap. Nature Methods (2009) vol. 6 (11 Suppl) pp. S2-5



Genome assembly is hard



Reviews on Assembly



Reviews on Assembly

Reviews on Read Mapping
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General Problems

• Repeats

• Sequencing errors

• Polymorphisms

• Contamination

Alkan et al. 2011
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de Novo Assembly

Schatz et al. 2010
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Overlap Graph
• Identify all pairwise overlaps 

among contigs (expensive for 
deep coverage, short reads)

• Error correction

• Contigs with disproportionally 
many reads are flagged as 
repeats

• Ideally, should identify 
Hamiltonian path through all 
contigs (Traveling salesman 
problem)

Schatz et al. 2010
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deBruijn Graph

• Decompose reads into k-mers (here k=4)

• Each k-mer induces an edge in de Bruijn 
graph (no pairwise overlap computation)

• Identify Eulerian path (path which uses all 
edges)



How to bridge gaps?
(“Scaffolding”)

• Increase coverage

• Use mate-pairs

• Gap closing through PCR

• Use mRNA library



Comparative Assembly:
Map to Reference Genome



Comparative Assembly:
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Hash tables

Trapnell & Salzberg, Nature Biotechnology 2009
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Suffix Tree/Array

 Adapted from lecture slides of Dr. Pekka Kilpela (http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides06.pdf)

Query: xa

[ 2 5 3 6 1 4 ]Suffix array: (3 Gbase * 64 bit = 24 Gbytes)
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• Define a distance matrix (“fitness 
matrix”) between every pair of 
contig.

• Model several reference genome 
by averaging the fitness matrices 
obtained with each genome.

• Use a genetic algorithm to identify 
the best ordering of contig (one 
with highest “fitness”)

reference genome 1

reference genome 2

contig i contig j
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Multiple reference species

Closest species as reference
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Comparative 
genomics approaches

• Attempt to bridge contigs after 
assembly/annotations

• Ensembl Compara (unpublished)

• ESPRIT (Dessimoz et al., in review)



Parts of the same gene
misannotated as separate genes

ESPRIT
“Establishing Split Protein Regions In Tentative genomes”

Low-coverage genome

Christophe Dessimoz, Stefan Zoller, Tereza Manousaki, Huan Qiu, Axel Meyer, and Shigehiro Kuraku, Comparative 
genomics approach to detecting split coding regions in a low-coverage genome: lessons from the chimaera 

Callorhinchus milii (Holocephali, Chondrichthyes), Briefings in Bioinformatics, in review
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Parts of the same gene
misannotated as separate genes

ESPRIT
“Establishing Split Protein Regions In Tentative genomes”

Low-coverage genome

Reference genome 1

Reference genome 2

Reference genome 3

Christophe Dessimoz, Stefan Zoller, Tereza Manousaki, Huan Qiu, Axel Meyer, and Shigehiro Kuraku, Comparative 
genomics approach to detecting split coding regions in a low-coverage genome: lessons from the chimaera 

Callorhinchus milii (Holocephali, Chondrichthyes), Briefings in Bioinformatics, in review



Open Challenges

• How to select & weight appropriate 
reference genomes.

• Duplications/repetitive sequences 
remain a challenge with these methods.



Conclusions
• Recently, a new assembly approach has 

emerged: phylogeny-based assembly.

• It is complementary to de novo assembly 
and assembly based on a single reference 
alignment.

• It can be done as part of the assembly 
process itself (4 published methods 
reviewed) or after assembly/annotation 
(Ensembl compara, ESPRIT)


