Reviews in Computational Biology

Phylogeny-guided Genome Assembly

Christophe Dessimoz May 9th, 2011

Outline

- Background on Genome Assembly
 - next generation sequencing
 - comparative assembly
 - de-novo assembly
 - read mapping

Outline

- Background on Genome Assembly
 - next generation sequencing
 - comparative assembly
 - de-novo assembly
 - read mapping
- Phylogeny-based Genome Assembly
 - Multiple reference genomes
 - Gene Library
 - Meta assembly
 - Comparative genomics

Outline

- Background on Genome Assembly
 - next generation sequencing
 - comparative assembly
 - de-novo assembly
 - read mapping
- Phylogeny-based Genome Assembly
 - Multiple reference genomes
 - Gene Library
 - Meta assembly
 - Comparative genomics
- Perspectives

Key Point

We observe the emergence of new type of methods for genome assembly based on multiple reference genomes in their phylogenetic context.

Sanger Sequencing

Alberts et al, Molecular Biology of the Cell, 2002, Garland Science, 4th Edition

Overview Next Gen.

Fuller et al. The challenges of sequencing by synthesis. Nat Biotechnol (2009) vol. 27 (11) pp. 1013-23

Read length vs. Cost

Rothberg and Leamon. The development and impact of 454 sequencing. Nat Biotechnol (2008) vol. 26 (10) pp. 1117-24

What is different?

- Much higher throughput / lower cost
- Sequence individual DNA fragments -> can deal with mixtures (environmental samples, etc.)
- Shorter reads

Mcpherson. Next-generation gap. Nature Methods (2009) vol. 6 (11 Suppl) pp. S2-5

Genome assembly is hard

P. S. G. Chain, ^{1,23+1}§ D. V. Grafham, ¹§ R. S. Fulton, ¹† M. G. FitzGerald, ¹† J. Hostetler, ¹† D. Muzny, ¹J. Ali, ¹B. Birren, ¹D. C. Bruce, ^{1,4}C. Buhay, ¹J. R. Cole, ¹Y. Ding, ¹S. Dugan, ¹D. Field, ¹¹ G. M. Garriy, ¹K. Gibba, ¹T. Graves, ¹C. S. Han, ¹¹S. S. Highlander, ¹F. Hugenhöltz, ¹H. H. M. Khouri, ¹¹C. D. Kodira, ⁴E. Kolker, ¹¹⁴ N. C. Kyrpides, ¹D. Lang, ¹¹A. Lapidus, ¹S. A. Mallatti, ¹¹J. Markovitz, ¹¹T. Metha, ¹K. E. Nelson, ¹J. Parkhill, ¹²S. Pitluck, ¹X. Oin, ¹T. D. Read, ⁴¹ J. Schmutz, ¹¹S. Sozhamannan, ¹¹P. Sterk, ¹¹R. L. Strausberg, ¹G. Sutton, ¹N. R. Thomson, ¹J. M. Tiedje, ¹G. Weinstock, ¹A. Wollam, ¹Genomic Standards Consortium Human Microbiome Project Jumpstart Consortium, ²J. J. Chetter, ¹¹T.

9 OCTOBER 2009 VOL 326 SCIENCE

Reviews on Assembly

Review

Trends in Genetics Vol.24 No.3 Cell

Bioinformatics challenges of new sequencing technology

Mihai Pop and Steven L. Salzberg

NATURE METHODS | VOL.8 NO.1 | JANUARY 2011

Limitations of next-generation genome sequence assembly

Can Alkan, Saba Sajjadian & Evan E Eichler

BRIEFINGS IN BIOINFORMATICS. VOL 10. NO 4. 354-366

Genome assembly reborn: recent computational challenges

Mihai Pop

Perspective

Genome Res. 2010 20: 1165-1173

doi:10.1093/bib/bbp026

Assembly of large genomes using second-generation sequencing

Michael C. Schatz, Arthur L. Delcher, and Steven L. Salzberg¹

Reviews on Assembly

Review

Trends in Genetics Vol.24 No.3 Cell

Bioinformatics challenges of new sequencing technology

Mihai Pop and Steven L. Salzberg

NATURE METHODS | VOL.8 NO.1 | JANUARY 2011

Limitations of next-generation genome sequence assembly

Can Alkan, Saba Sajjadian & Evan E Eichler

BRIEFINGS IN BIOINFORMATICS. VOL 10. NO 4. 354-366

Genome assembly reborn: recent computational challenges

Mihai Pop

Perspective

Genome Res. 2010 20: 1165-1173

doi:10.1093/bib/bbp026

Assembly of large genomes using second-generation sequencing

Michael C. Schatz, Arthur L. Delcher, and Steven L. Salzberg¹

Reviews on Read Mapping

NATURE BIOTECHNOLOGY VOLUME 27 NUMBER 5 MAY 2009 How to map billions of short reads onto genomes

Cole Trapnell & Steven L Salzberg

BRIEFINGS IN BIOINFORMATICS. VOL II. NO 5. 473-483 Advance Access published on II. May 2010 doi:10.1093/bib/bbq01

A survey of sequence alignment algorithms for next-generation sequencing

Heng Li and Nils Homer

• Repeats

Schatz et al. 2010

- Repeats
- Sequencing errors

Schatz et al. 2010

- Repeats
- Sequencing errors
- Polymorphisms

- Repeats
- Sequencing errors
- Polymorphisms
- Contamination

Alkan et al. 2011

de Novo Assembly

CCG

• Identify all pairwise overlaps among contigs (expensive for deep coverage, short reads)

- Identify all pairwise overlaps among contigs (expensive for deep coverage, short reads)
- Error correction

- Identify all pairwise overlaps among contigs (expensive for deep coverage, short reads)
- Error correction
- Contigs with disproportionally many reads are flagged as repeats

- Identify all pairwise overlaps among contigs (expensive for deep coverage, short reads)
- Error correction
- Contigs with disproportionally many reads are flagged as repeats
- Ideally, should identify Hamiltonian path through all contigs (Traveling salesman problem)

• Decompose reads into k-mers (here k=4)

- Decompose reads into k-mers (here k=4)
- Each k-mer induces an edge in de Bruijn graph (no pairwise overlap computation)

- Decompose reads into k-mers (here k=4)
- Each k-mer induces an edge in de Bruijn graph (no pairwise overlap computation)
- Identify *Eulerian path* (path which uses all edges)

How to bridge gaps? ("Scaffolding")

- Increase coverage
- Use mate-pairs
- Gap closing through PCR
- Use mRNA library

Comparative Assembly: Map to Reference Genome

Table I: Popular short-read alignment software

Program	Algorithm	SOLiD	Long ^a	Gapped	PE ^b	Qʻ
Bfast	hashing ref.	Yes	No	Yes	Yes	No
Bowtie	FM-index	Yes	No	No	Yes	Yes
BWA	FM-index	Yes ^d	Yes ^e	Yes	Yes	No
MAQ	hashing reads	Yes	No	Yes ^f	Yes	Yes
Mosaik	hashing ref.	Yes	Yes	Yes	Yes	No
Novoalign ^g	hashing ref.	No	No	Yes	Yes	Yes

^aWork well for Sanger and 454 reads, allowing gaps and clipping. ^bPaired end mapping. ^cMake use of base quality in alignment. ^dBWA trims the primer base and the first color for a color read. ^eLong-read alignment implemented in the BWA-SW module. ^fMAQ only does gapped alignment for Illumina paired-end reads. ^gFree executable for non-profit projects only.

Comparative Assembly: Map to Reference Genome

Table I: Popular short-read alignment software

Program	Algorithm	SOLiD	Long ^a	Gapped	PE ^b	Qʻ
Bfast	hashing ref.	Yes	No	Yes	Yes	No
Bowtie	FM-index	Yes	No	No	Yes	Yes
BWA	FM-index	Yes ^d	Yes ^e	Yes	Yes	No
MAQ	hashing reads	Yes	No	Yes ^f	Yes	Yes
Mosaik	hashing ref.	Yes	Yes	Yes	Yes	No
Novoalign ^g	hashing ref.	No	No	Yes	Yes	Yes

^aWork well for Sanger and 454 reads, allowing gaps and clipping. ^bPaired end mapping. ^cMake use of base quality in alignment. ^dBWA trims the primer base and the first color for a color read. ^eLong-read alignment implemented in the BWA-SW module. ^fMAQ only does gapped alignment for Illumina paired-end reads. ^gFree executable for non-profit projects only.

Hash tables

Seed index (tens of gigabytes)

Trapnell & Salzberg, Nature Biotechnology 2009

Hash tables

Trapnell & Salzberg, Nature Biotechnology 2009
Hash tables

Suffix array: [253614]

Suffix array: [253614]

Suffix array: [253614]

Suffix array: [253614]

Suffix array: [253614] (3 Gbase * 64 bit = 24 Gbytes)

Burrows-Wheeler Transform

Published: 4 March 2009

Genome Biology 2009, 10:R25

Software

Open Access

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

BIOINFORMATICS ORIGINAL PAPER

Vol. 25 no. 14 2009, pages 1754–1760 doi:10.1093/bioinformatics/btp324

Sequence analysis

Fast and accurate short read alignment with Burrows–Wheeler transform

Heng Li and Richard Durbin* Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK Received on February 20, 2009; revised on May 6, 2009; accepted on May 12, 2009

Burrows-Wheeler Transform

Cited by 447 (May 2011)

Published: 4 March 2009

Genome Biology 2009, 10:R25

Software

Open Access

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

BIOINFORMATICS ORIGINAL PAPER

Vol. 25 no. 14 2009, pages 1754–1760 doi:10.1093/bioinformatics/btp324

Sequence analysis

Fast and accurate short read alignment with Burrows–Wheeler transform

Heng Li and Richard Durbin* Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK Received on February 20, 2009; revised on May 6, 2009; accepted on May 12, 2009

Burrows-Wheeler Transform

Cited by 447 (May 2011)

Published: 4 March 2009

Genome Biology 2009, 10:R25

Software

Open Access

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

Cited by 246 (May 2011)

BIOINFORMATICS ORIGINAL PAPER ^{Vol}

Vol. 25 no. 14 2009, pages 1754–1760 doi:10.1093/bioinformatics/btp324

Sequence analysis

Fast and accurate short read alignment with Burrows–Wheeler transform

Heng Li and Richard Durbin* Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK Received on February 20, 2009; revised on May 6, 2009; accepted on May 12, 2009

Phylogeny-guided Genome Assembly

OPEN CCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Gene-Boosted Assembly of a Novel Bacterial Genome from Very Short Reads

Steven L. Salzberg¹*, Daniel D. Sommer¹, Daniela Puiu¹, Vincent T. Lee²

- Use multiple genomes to try to bridge as many gaps as possible.
- Use library of proteincoding genes to bridge further gaps (protein evolve slower)
- Do *de novo* assembly of unmapped contigs.

OPEN OACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Gene-Boosted Assembly of a Novel Bacterial Genome from Very Short Reads

Steven L. Salzberg¹*, Daniel D. Sommer¹, Daniela Puiu¹, Vincent T. Lee²

- Use multiple genomes to try to bridge as many gaps as possible.
- Use library of proteincoding genes to bridge further gaps (protein evolve slower)
- Do *de novo* assembly of unmapped contigs.

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Gene-Boosted Assembly of a Novel Bacterial Genome from Very Short Reads

Steven L. Salzberg¹*, Daniel D. Sommer¹, Daniela Puiu¹, Vincent T. Lee²

- Use multiple genomes to try to bridge as many gaps as possible.
- Use library of proteincoding genes to bridge further gaps (protein evolve slower)

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Gene-Boosted Assembly of a Novel Bacterial Genome from Very Short Reads

Steven L. Salzberg¹*, Daniel D. Sommer¹, Daniela Puiu¹, Vincent T. Lee²

- Use multiple genomes to try to bridge as many gaps as possible.
- Use library of proteincoding genes to bridge further gaps (protein evolve slower)
- Do *de novo* assembly of unmapped contigs.

Nucleic Acids Research, 2008, Vol. 36, No. 10 3455–3462 doi:10.1093/nar/gkn168

A new pheromone trail-based genetic algorithm for comparative genome assembly

Fangqing Zhao¹, Fanggeng Zhao², Tao Li¹ and Donald A. Bryant^{1,*}

• Define a distance matrix ("fitness matrix") between every pair of contig.

Nucleic Acids Research, 2008, Vol. 36, No. 10 3455–3462 doi:10.1093/nar/gkn168

A new pheromone trail-based genetic algorithm for comparative genome assembly

Fangqing Zhao¹, Fanggeng Zhao², Tao Li¹ and Donald A. Bryant^{1,*}

- Define a distance matrix ("fitness matrix") between every pair of contig.
- Model several reference genome by averaging the fitness matrices obtained with each genome.

Nucleic Acids Research, 2008, Vol. 36, No. 10 3455–3462 doi:10.1093/nar/gkn168

A new pheromone trail-based genetic algorithm for comparative genome assembly

Fangqing Zhao¹, Fanggeng Zhao², Tao Li¹ and Donald A. Bryant^{1,*}

- Define a distance matrix ("fitness matrix") between every pair of contig.
- Model several reference genome by averaging the fitness matrices obtained with each genome.

reference genome 1

contig i contig j

Nucleic Acids Research, 2008, Vol. 36, No. 10 3455–3462 doi:10.1093/nar/gkn168

A new pheromone trail-based genetic algorithm for comparative genome assembly

Fangqing Zhao¹, Fanggeng Zhao², Tao Li¹ and Donald A. Bryant^{1,*}

- Define a distance matrix ("fitness matrix") between every pair of contig.
- Model several reference genome by averaging the fitness matrices obtained with each genome.
- Use a genetic algorithm to identify the best ordering of contig (one with highest "fitness")

contig i			contig	ij
	reference	e genoi	ne 2	

Nucleic Acids Research, 2008, Vol. 36, No. 10 3455-3462 doi:10.1093/nar/gkn168

A new pheromone trail-based genetic algorithm for comparative genome assembly Fangqing Zhao¹, Fanggeng Zhao², Tao Li¹ and Donald A. Bryant^{1,*}

Published online 29 April 2008 A new pheromone t for comparative gen Fangqing Zhao ¹ , Fanggeng Zhao ²	Nucleic Acids Research, 2008, Vol. 36, No, 10 3455–3462 doi:10.1093/mar/gkn168 rail-based genetic algorithm nome assembly ² , Tao Li ¹ and Donald A. Bryant ^{1,*}	Ref	ference Plut
		Best	Average
Clim	PGA	0.378	0.346 ± 0.026
	BLAST-end Projector2 OSLay	0.135 0.162 0.108	NA NA NA
Cvib	PGA	0.769	0.738 ± 0.015
	BLAST-end Projector2 OSLay	0.538 0.577 0.423	NA NA NA
Cpar	PGA	0.586	0.559 ± 0.018
	BLAST-end Projector2 OSLay	0.172 0.155 0.103	NA NA NA

Published online 29 April 2008 Nucleic Acids Research, 2008, Vol. 36, No. 10 3455-3462 A new pheromone trail-based genetic algorithm for comparative genome assembly Fangqing Zhao ¹ , Fanggeng Zhao ² , Tao Li ¹ and Donald A. Bryant ^{1,*}		Ret	Reference Plut		2 or 3 Refs	
		Best	Average	Best	Average	
Clim	PGA	0.378	0.346 ± 0.026	0.514 ^b	$0.443 \pm 0.040^{\rm b}$	
Clim	10/1			NA	Na	
	BLAST-end	0.135	NA	NA	NA	
	Projector2	0.162	NA	NA	NA	
	OSLay	0.108	NA	NA	NA	
Cvib	PGA	0.769	0.738 ± 0.015	0.731 ^c	$0.731 \pm 0.000^{\circ}$	
	BLAST-end	0.538	NA	NA	NA	
	Projector?	0.577	NA	NA	NA	
	OSLay	0.423	NA	NA	NA	
Cpar	PGA	0.586	0.559 ± 0.018	0.741 ^d	0.738 ± 0.007^{d}	
		0 170	N T 4	NA	NA	
	BLAST-end	0.172	NA	NA	NA	
	Projector2	0.155	NA	NA	NA	
	OSLay	0.103	NA	NA	NA	

 $w_r(v_i, v_j) = \sum_{m_i^r \in \mathcal{M}_i^r, m_j^r \in \mathcal{M}_j^r} s\left(d(\pi(m_i^r), \pi(m_j^r)), d_{\mathcal{T}}\right) \cdot qhits(m_i^r) \cdot qhits(m_j^r)$

$$w_r(v_i, v_j) = \sum_{m_i^r \in \mathcal{M}_i^r, m_j^r \in \mathcal{M}_j^r} s\left(d(\pi(m_i^r), \pi(m_j^r)), d_{\mathcal{T}}\right) \cdot qhits(m_i^r) \cdot qhits(m_j^r)$$

Weight of edge between two contigs

$$w_{r}(v_{i}, v_{j}) = \sum_{\substack{m_{i}^{r} \in \mathcal{M}_{i}^{r}, m_{j}^{r} \in \mathcal{M}_{j}^{r} \\ m_{i}^{r} \in \mathcal{M}_{i}^{r}, m_{j}^{r} \in \mathcal{M}_{j}^{r}} s\left(d(\pi(m_{i}^{r}), \pi(m_{j}^{r})), d_{T}\right) \cdot qhits(m_{i}^{r}) \cdot qhits(m_{j}^{r})$$

$$Weight of edge between two contigs$$

$$All pairs of matches between \{v_{i}, v_{j}\} \times r$$

$$M_{i} = M_{i}$$

$$M_{i} = M_{i}$$

$$w_{r}(v_{i}, v_{j}) = \sum_{\substack{m_{i}^{r} \in \mathcal{M}_{i}^{r}, m_{j}^{r} \in \mathcal{M}_{j}^{r} \\ w_{i} \text{ between} \\ \text{two contias}}} s\left(d(\pi(m_{i}^{r}), \pi(m_{j}^{r})), d_{\mathcal{T}}\right) \cdot \text{qhits}(m_{i}^{r}) \cdot \text{qhits}(m_{j}^{r})$$

$$score \ depends \ on \\ \text{dist. between matches and} \\ phylogenetic \ distance \\ \text{dist. between matches} \\ \text$$

to ref. genome

mi mi

two contigs

Closest species as reference

Organism	Closest Reference	OSLay		Projector2	
-		ТР	FP	ТР	FP
C. aurimucosum	C. glutamicum	0	1	10	20
C. kroppenstedtii	C. jeikeium	0	0	1	2
C. urealyticum	C. jeikeium	6	6	8	18

Closest species as reference

Organism	Closest Reference	OSLay		Projector2	
-		ТР	FP	ТР	FP
C. aurimucosum	C. glutamicum	0	1	10	20
C. kroppenstedtii	C. jeikeium	0	0	1	2
C. urealyticum	C. jeikeium	6	6	8	18

PG	δA	tre	ecat
ТР	FP	ТР	FP
14.5 (16)	66.5 (70)	17	66
2.0 (2)	4.0 (4)	3	6
20.9 (25)	72.5 (76)	27	70

Multiple reference species

BIOINFORMATICS

Vol. 26 ECCB 2010, pages i433–i439 doi:10.1093/bioinformatics/btq366

Integrating genome assemblies with MAIA

Jurgen Nijkamp^{1,2,3,*}, Wynand Winterbach^{1,4}, Marcel van den Broek^{2,3}, Jean-Marc Daran^{2,3}, Marcel Reinders^{1,3,5} and Dick de Ridder^{1,3,5}

¹The Delft Bioinformatics Lab, Department of Mediamatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, ²Industrial Microbiology Group, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, ³Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, ⁴Network Architectures and Services, Department of Telecommunications, Delft University of Technology, Mekelweg 4, 2628 CD Delft and ⁵Netherlands Bioinformatics Center, 260 NBIC, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

A "meta" assembler

A Perform *de novo* and comparative assembly

De novo assembly 1 (Abyss)

De novo assembly 2 (Celera)

Mapping against related genome 1 (S288c)

Mapping against related genome 2 (YJM789)

Mapping against related genome 3 (RM11-1A)

D Determine orientation by depth-first traversing the graph in order of weights

B Calculate pairwise overlaps between contigs

E Edge direction follows from end-to-end alignments

C Construct overlap graph, determine start and end node and weigh edges with Z-scores

F Find the highest scoring path using a Tabu search and call consensus

BIOINFORMATICS

Vol. 26 ECCB 2010, pages i433–i439 doi:10.1093/bioinformatics/btq366

Integrating genome assemblies with MAIA

Jurgen Nijkamp^{1,2,3,*}, Wynand Winterbach^{1,4}, Marcel van den Broek^{2,3}, Jean-Marc Daran^{2,3}, Marcel Reinders^{1,3,5} and Dick de Ridder^{1,3,5} ¹The Delft Bioinformatics Lab, Department of Mediamatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, ²Industrial Microbiology Group, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, ³Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, ⁴Network Architectures and Services, Department of Telecommunications, Delft University of Technology, Mekelweg 4, 2628 CD Delft and ⁵Netherlands Bioinformatics Center, 260 NBIC, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

A "meta" assembler

A Perform *de novo* and comparative assembly

De novo assembly 1 (Abyss)

De novo assembly 2 (Celera)

Mapping against related genome 1 (S288c)

Mapping against related genome 2 (YJM789)

Mapping against related genome 3 (RM11-1A)

D Determine orientation by depth-first traversing the graph in order of weights

B Calculate pairwise overlaps between contigs

E Edge direction follows from end-to-end alignments

BIOINFORMATICS

Vol. 26 ECCB 2010, pages i433–i439 doi:10.1093/bioinformatics/btq366

Integrating genome assemblies with MAIA

Jurgen Nijkamp^{1,2,3,*}, Wynand Winterbach^{1,4}, Marcel van den Broek^{2,3}, Jean-Marc Daran^{2,3}, Marcel Reinders^{1,3,5} and Dick de Ridder^{1,3,5} ¹The Delft Bioinformatics Lab, Department of Mediamatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, ²Industrial Microbiology Group, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, ³Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, ⁴Network Architectures and Services, Department of Telecommunications, Delft University of Technology, Mekelweg 4, 2628 CD Delft and ⁵Netherlands Bioinformatics Center, 260 NBIC, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

A "meta" assembler

B Calculate pairwise overlaps between contigs

E Edge direction follows from end-to-end alignments

C Construct overlap graph, determine start and end node and weigh edges with Z-scores

F Find the highest scoring path using a Tabu search and call consensus

BIOINFORMATICS

Vol. 26 ECCB 2010, pages i433–i439 doi:10.1093/bioinformatics/btq366

Integrating genome assemblies with MAIA

Jurgen Nijkamp^{1,2,3,*}, Wynand Winterbach^{1,4}, Marcel van den Broek^{2,3}, Jean-Marc Daran^{2,3}, Marcel Reinders^{1,3,5} and Dick de Ridder^{1,3,5}

¹The Delft Bioinformatics Lab, Department of Mediamatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, ²Industrial Microbiology Group, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, ³Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, ⁴Network Architectures and Services, Department of Telecommunications, Delft University of Technology, Mekelweg 4, 2628 CD Delft and ⁵Netherlands Bioinformatics Center, 260 NBIC, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

A "meta" assembler

.....

D Determine orientation by depth-first traversing the graph in order of weights

E Edge direction follows from end-to-end alignments

.......

BIOINFORMATICS

Vol. 26 ECCB 2010, pages i433–i439 doi:10.1093/bioinformatics/btq366

Integrating genome assemblies with MAIA

Jurgen Nijkamp^{1,2,3,*}, Wynand Winterbach^{1,4}, Marcel van den Broek^{2,3}, Jean-Marc Daran^{2,3}, Marcel Reinders^{1,3,5} and Dick de Ridder^{1,3,5}

¹The Delft Bioinformatics Lab, Department of Mediamatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, ²Industrial Microbiology Group, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, ³Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, ⁴Network Architectures and Services, Department of Telecommunications, Delft University of Technology, Mekelweg 4, 2628 CD Delft and ⁵Netherlands Bioinformatics Center, 260 NBIC, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

A "meta" assembler

E Edge direction follows from end-to-end alignments

F Find the highest scoring path using a Tabu search and call consensus

BIOINFORMATICS

Vol. 26 ECCB 2010, pages i433–i439 doi:10.1093/bioinformatics/btq366

Integrating genome assemblies with MAIA

Jurgen Nijkamp^{1,2,3,*}, Wynand Winterbach^{1,4}, Marcel van den Broek^{2,3}, Jean-Marc Daran^{2,3}, Marcel Reinders^{1,3,5} and Dick de Ridder^{1,3,5} ¹The Delft Bioinformatics Lab, Department of Mediamatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, ²Industrial Microbiology Group, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, ³Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, ⁴Network Architectures and Services, Department of Telecommunications, Delft University of Technology, Mekelweg 4, 2628 CD Delft and ⁵Netherlands Bioinformatics Center, 260 NBIC, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

Strategy	Assembly	Package	# contigs	Total size (Mb)	N50 (kb)	Mapped reads (%)
Single input	De novo	Abyss	1223	11.64	20	84.8
	De novo	Celera	4148	9.03	3	62.8
	Comparative (S288c)	Maq	375	12.06	162	96.9
	Comparative (YJM789)	Maq	907	11.77	44	90.8
	Comparative (RM11-1A)	Maq	795	11.54	41	78.2
Hybrid	De novo	Velvet	654	11.40	72	75.5
	De novo + comparative	Minimus	71	12.21	290	92.1
	<i>De novo</i> + comparative	MAIA	29	12.01	918	96.5

Comparative genomics approaches

- Attempt to bridge contigs after assembly/annotations
- Ensembl Compara (unpublished)
- ESPRIT (Dessimoz *et al.*, in review)

"Establishing Split Protein Regions In Tentative genomes"

Low-coverage genome

"Establishing Split Protein Regions In Tentative genomes"

"Establishing Split Protein Regions In Tentative genomes"

"Establishing Split Protein Regions In Tentative genomes"

Open Challenges

- How to select & weight appropriate reference genomes.
- Duplications/repetitive sequences remain a challenge with these methods.

Conclusions

- Recently, a new assembly approach has emerged: phylogeny-based assembly.
- It is complementary to *de novo* assembly and assembly based on a single reference alignment.
- It can be done as part of the assembly process itself (4 published methods reviewed) or after assembly/annotation (Ensembl compara, ESPRIT)