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PNPase : Phosphorolytic cleavage mechanism

220kDa homo-trimeric exoribonuclease
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RNA remains bound during purification
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Absolute metabolite concentrations and implied enzyme
active site occupancy in Escherichia coli

Bryson D Bennett!, Elizabeth H Kimball!, Melissa Gao', Robin Osterhout?, Stephen J Van Dien? & Joshua D Rabinowitz!

Absolute metabolite concentrations are critical to a quantitative understanding of cellular metabolism, as concentrations

impact both the free energies and rates of metabolic reactions. Here we use LC-MS/MS to quantify more than 100 metabolite
concentrations in aerobic, exponentially growing Escherichia coli with glucose, glycerol or acetate as the carbon source. The total
observed intracellular metabolite pool was approximately 300 mM. A small number of metabolites dominate the metabolome

on a molar basis, with glutamate being the most abundant. Metabolite concentration exceeds K, for most substrate-enzyme
pairs. An exception is lower glycolysis, where concentrations of intermediates are near the K, of their consuming enzymes and
all reactions are near equilibrium. This may facilitate efficient flux reversibility given thermodynamic and osmotic constraints.
The data and analyses presented here highlight the ability to identify organizing metabolic principles from systems-level absolute
metabolite concentration data.



Metabolite concentration (mol I")

In E. coli many metabolites are at concentrations > Km for enzymes
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“Organisms, like pinatas, were there to be burst open in order to get at the
(biochemical) goodies within—a view of microorganisms that, with justification,
persists today among some subfields of microbiology.”

Woese, C. R,, and Goldenfeld, N. (2009) Microbiol & Mol Biol Rev 73, 14-21



Crystal structure of enolase in complex with
peptide C and 3-phosphoglycerate
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Crystal structure of enolase in complex with
peptide C and 3-phosphoglycerate
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enzyme activity [umol / (min * pg protein)]

PEP inhibits triosephosphate isomerase, an upstream enzyme
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Pentose phosphate pathway
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PK in regulating redox metabolism
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Summary and conjecture, part 1:

Given the high concentrations (and ratios,

~40 metabolites for every protein

molecule in E. coli), metabolites may be competitive
inhibitors and allosteric modulators

(activating or inhibiting).

Competitive inhibitor mode for metabolites that change by perhaps more
than 3-fold with growth conditions

Allosteric modulators for metabolites that change by less than 3-fold,
depending on cooperative behaviour of the putative targets

Regulation likely to be at points highly favored thermodynamically
(effectively irreversible). May be needed to avoid

Swings in metabolite levels (since concentrations > enzyme Km'’s)
Bennett et al. (2009) Nature Chem Biol.



Any bottlenecks?
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Metabolite concentration (mol I")

In E. coli many metabolites are at concentrations > Km for enzymes
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Control of gene expression in mammals

Quantitative study: Protein level proportional to transcript level

Protein level poorly correlated with transcript half-life

Schwanhausser et al. (2011) Global quantification of mammalian gene expression control. Nature 473:337-342.
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Possibly, transcription rates and degradation rates are matched and adjusted to
control levels of individual transcripts
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In vivo requirements for PNPase
and two other exoribonucleases

(RNase |l & RNase R)

= PNPase is not essential for survival, but ...
= PNPase RNase |- cells are inviable
= PNPase  RNase R- cells are inviable

In a RNase II/RNase R double null, inactivation
of PNPase will impede growth

Helen Vincent
Portsmouth
University




Growth rates in the presence of Mg Citrate

Doubling Time (minutes)
Strain Wild type
] .Mg 48.7 +2.6
citrate
+ Mg 49.2 119
citrate

= PNPase is partly inhibited by Mg citrate in vivo

= PNPase is responsible for a significant
proportion of Mg citrate-mediated effects



PNPase activity affects the ‘metabolome’

Strains cultured to stationary phase

v

Characteristic Changes:
Mutant vs. Wil

Unstressed condition
Increase: Decrease:
18) Betaine 24) a-glucose

27) Phenylalanine 9) Methionine
- 14) Succinate 11) Proline

Metabolic activity quenched

v

Samples extracted

v

26) Tryptophan

13) Pyruvate

2) Lactate

Phosphosugar Stress
Increase: Decrease:

11) Proline 18) Betaine

Analysis of metabolites by
GC-MS and NMR




RNA degradosome: towards a systems biology
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Schematic illustration of the cellular mechanisms of control (grey) highlighting the link between metabolic status and RNA
turnover (red). The activity of PNPase (red pacman) can be impacted by the Krebs cycle metabolite, citrate. Wide ranging,
distributive control can consequently be mediated (red arrows).



Glucose
hk
D-glucose-6-phosphate
ATP

>
(o)
2
+
)

fructose-6-phosphate
pik
fructose-1,6-phosphate
ald, tpi
glyceraldehyde 3-phosphate
NAD*
NAD

1,3-bisphosphoglycerate
ADP +Pi

PENTOSE PHOSPHATE
PATHWAY

GLYCOLYSIS

gap

pgk
ATP:

3 phosphoglycerate
logm
2-phosphoglycerate
no
AMINO ACID SYNTHESIS phosphoenolpyruvate
AND ADP +Pi

pk NADH
SECONDARY METABOLISM ATP.

NAD + CoA <€—_
NADH + CO, _—~

N\
Oxaloacetate™~.

NADH~_ \
NAD" ) fndh grA

Acetyl-CoA ———» Acetate

Synopsis

Metabolic regulation likely requires wide
ranging, distributive control

NAD*

PNPase affects E. coli metabolism
distributively

Malate |
-~ a{ A g W\}m PNPase may be regglated
ol A . // w-cn  Krebs cycle metabolites
| e | KREBS CYCLE | i _

a-ketoglutarate

sucC,
N Ay _~NADPH
Succinyl- NAD + oA, TADP
coA

NADH +CO,

Glutamate—»OmlthIne

.(‘
Prollne
Putrescine

NHg*



Summary and conjecture, part 2:

To account for the steady-state levels of some metabolites, there must be some
global coordination of enzyme levels. This is somehow optimised to balance
between wasteful synthesis of enzyme and having insufficient enzyme activity

Somehow there is feedback of metabolic flux or derivatives at
two or more points to transcription and post-transcription



Questions to explore

To what extent are metabolites used for
communication between distant points
in metabolic pathways, and what impact
does this have?

What organises metabolic systems so
that metabolites accumulate?

Is there a meaningful link between metabolism
and post-transcriptional regulation?
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