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?
Identifying the molecular 
pathways targeted by a 
compound and its off-target 
effects

Drug (Mode of Action) Discovery

?
Dissecting what follows the 
drug/substrate interaction



“The most fruitful basis for the 
discovery of a new drug is to 

start with an old drug.”
(Nobel laureate James Black)

Drug Re-Purposing

Application of known (safe and approved) 
drugs to new therapeutic indications

Famous Examples: Raloxifene, Thalidomide, Sildenafil



Drug	  discovery	  pipelines	  have	  been	  typically	  guided	  by	  
knowledge	  of	  disease	  mechanisms,	  	  chemical	  structures	  

of	  drug	  candidates	  and	  	  targets

Why Drug Re-purposing ?

High-‐Throughput	   Screening:	   test	   hundreds	   of	   thousands	   of	  
compounds	   a	   day	   for	   ac<vity	   against	   the	   target	   protein.	  
Successful	  iden7fica7on	  of	  drug	  candidates	  but	  with	   increased	  
process	  costs

Drug	  re-‐posi<oning	  
is	  easier,	  cheaper	  
and	  faster
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Most frequently used strategy







“Guilt-by-association” approaches
Exploiting binding site similarity for
drug repositioning
There have been a number of approaches to com-
putational drug repositioning, including similarity of
side effects mined from literature [12, 13], similarity
of gene expression profiles of different diseases [14]
and structural similarity of binding sites [15]. In this
review, we focus on the latter, since it provides in-
sight into the mode of action of the drug and since
there are already some success stories. Although there
are drugs binding to other biological targets, we will
concentrate on proteins here. To complement the
space in the protein–drug interactome, which is
not covered by this approach, we briefly introduce
some other methods at the end of this review.

To reduce attrition rates (taking advantage of the
ever growing amount of available data), using com-
putational methods to find alternative targets (or
similar binding sites) is getting important in the be-
ginning of the drug discovery process. The examples
of staurosporine binding to synapsin I [16] and the
high affinity binding of celecoxib to carbonic anhy-
drases [17] as well as many others, show that similar
binding sites exist among different proteins. It is rea-
sonable to conclude that similar binding sites most
likely bind the same ligands. This observation can be
exploited, using binding site comparison methods to
find new targets for known drugs leading eventually
to drug repositioning (Figure 1).

Shedding light on the protein–drug interaction
space helps to better understand drug modes of
action and can help to reduce drug doses. The iden-
tification of off-targets gives the opportunity to op-
timize drugs to gain a higher selectivity and thus
reduce side effects.

Promiscuity of drugs
The prerequisite for drug repositioning is polyphar-
macology or drug promiscuity, meaning that one
drug binds to multiple distinct targets. Recent ex-
periments have shown that promiscuity of proteins in
ligand binding as well as in function is not as rare as
previously thought [18, 19]. Moreover, degeneracy
(partial redundancy) was found to be a key design
principle in biological systems [20], since it increases
the adaptability of an organism to environmental
changes. Promiscuous drugs are common [21] and
thus there is an enormous potential to find novel
targets for already known drugs based on the
approved targets. The definition of a drug target is
often not clear. If one defines a drug target as a

protein to which a drug molecule binds physically,
there are about 320 known targets for approved
drugs [22]. Applying a more loose definition and
including experimental drugs can easily lead to
6000 or more ‘drug targets’ [23].
A study of a data set of 276 122 bioactive com-

pounds revealed that 35% of them are known to
bind to more than one target [24]. A quarter of
these was found to bind to proteins from different
gene families. In a recent analysis of 189 807 bio-
active compounds in PubChem, 62% of these were
found to bind to more than one target [25]. Among
the remaining 38%, about half of them were highly
selective. The permissive binding of a drug to
off-targets can be the cause of adverse side effects
but may in contrast also increase its efficacy like re-
ported for anticancer and antipsychotic drugs [21, 26,
27]. Moreover, the old ‘one drug—one target’
paradigm erodes and so called ‘dirty drugs’ gain
popularity [26, 28, 29]. Similarities in the key
pharmacophores of structurally different proteins
can lead to high affinity binding of the same drug
[17]. Obviously, proteins within the same family are

Figure 1: The drug repositioning process using bind-
ing site similarity. Two proteins A and B have similar
binding sites and thus can be aligned (C). The found
binding site similarity suggests that the ligand D may
also bind to the protein B. This gives a candidate for
drug repositioning.
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Haupt et al, Brief Bioinformatics 2011

Structural Bioinformatics

Exploiting binding site similarities between therapeutic targets

- A is a targeted by D to treat disease 1 
- B is a therapeutic target for disease 2

- A is “similar” to B

D could be re-positioned for disease 2 

substance A affects B. Discovery in this case is
making the implicit link AC through the
B-connection.

Swanson’s analogical reasoning approach was later
formalized by Weeber and coworkers, who pro-
posed a two step process for discovery based on the
ABC model. In the ‘closed discovery’ process, where
the two starting concepts A and C are already
known, the purpose of the discovery process is to
interpret the implicit relationship between A and C
(Figure 2A). This is the original conceptual model of
Swanson. The open discovery process (Figure 2B)
begins with a concept A, for example, a disease
and looks for arguments B related to concept A,
for example, the mechanism of the disease. At the
second step, concepts C are sought that share the B
arguments; for example drugs, the effects of which
are mediated by this mechanism [29, 30].

Both open and closed LBD modes have inspired
literature mining researchers to create tools attempt-
ing to (semi) automate the discovery process, taking
advantage of information extraction (IE) techniques
to efficiently extract relevant information from the
scientific literature and integrating additional data
types and sources to the discovery process on top
of the scientific literature. Almost all applications of
LBD described in the literature attempt to discover
treatments for diseases using known drugs and nutri-
tional supplements as their basis, demonstrating the

applicability and relevance of LBD to drug repurpos-
ing [13, 17–19, 35, 40, 42–46, 75, 82]. It is also of
interest that relationships between concepts have
almost exclusively been based on co-occurrence of
terms and facts in the same abstract.
Smalheiser and Swanson proceeded with the cre-

ation of a web tool called Arrowsmith, which builds
on the closed discovery mode of the original ABC
model, adding a level of automation to the interpret-
ation of the implicit connection between the A and
C concepts [31]. Gordon and Lindsay [32] employed
the open discovery mode and used lexical statistics
over titles and abstracts to recreate Swnason’s discov-
eries. Weeber et al. [29] pursued the same goal using
the Unified Medical Language System (UMLS) [33]
and lexical tools to map natural language text to
UMLS concepts. The tool they built, called DAD
was based on the MetaMap program [34] to map
words in the abstract to UMLS concepts. Weeber
et al. [35], following their elaboration of the ABC
model, made four novel therapeutic applications
for thalidomide: myasthenia gravis, chronic hepatitis
C, Helicobacter pylori-induced gastritis and acute pan-
creatitis. LitLinker [36] and Telemakus [37] are two
other systems taking advantage of the MetaMap pro-
gram and UMLS. LitLinker also used MeSH [38] for
term selection and reduction steps. Telemakus also
enables the visualization of the networks it creates, in
a conceptual graph. Van der Eijk et al. [39] extracted
information from abstracts and then built a
co-occurrence based Associative Concept Space
(ACS) algorithm to place all concepts in an n-dimen-
sional space. Concepts in close proximity are con-
sidered to be related and if these concepts do not
have a direct relationship, a potentially novel rela-
tionship has been discovered. Wren et al. [40]
constructed a co-occurrence based network of bio-
medical concepts extracted from MEDLINE and
then used the strength of the associations to infer
novel relationship between cardiac hypertrophy
and Chlorpromazine. The authors then went ahead
and validated this relationship in animal models.
Narayanasamy et al. [41] also created an association
graph by mining MEDLINE for biomedical concepts
and then used this network to find transitive associ-
ations in a tool called TransMiner. In a study pursu-
ing the closed discovery mode of LBD, Ahlers
et al. [42] extracted semantic predications from
MEDLINE and then used this information to iden-
tify proteins that potentially provide a link between
cancer and anti-psychotic agents. Petric et al. [43] put

A B C

A

B1

B2

B3

C1

C2

C3

C4

A

B

Figure 2: (A) Graphical representation of Swanson’s
ABC model. Concepts A and C may have an implicit
connection to each other, if they share an explicit con-
nection with concept B. This is also called the closed
discovery model. (B) The open discovery model [29].
Concept A is linked to one or more concepts C
through intermediate concepts B.

Literature mining for drug repurposing page 3 of 12
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Swanson’s ABC closed model

Adapted from Andronis et al, Brief Bioinformatics 2011

Text-Mining
- Concept A (drug) is linked to concept B (disease I)

- Concept B is linked to concept C (disease 2)

Concept A is implicitly linked
(could be re-positioned) to C



“Guilt-by-association” for drug 
re-positioning on other kind of 

data?





Lussier Y A , Chen J L Sci Transl Med 
2011;3:96ps35-96ps35 

Genomic-Metrics on Transcriptional Data
to Summarize clinical Phenotypes

Lussier and Chen, Sci Trans Med 2011
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Leading Idea:
Every biological state can be described by a given

gene expression signature

adapted from Taube et al, PNAS 2010
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Drugs	  “rever<ng”	  a	  phenotype	  signature	  “revert	  the	  phenotype”

Sirota et al, Sci Trans Med 2011
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Drugs	  “rever<ng”	  a	  phenotype	  signature	  “revert	  the	  phenotype”

prednisolone. Based on our analysis, topiramate is also one of the
strongest predicted therapies for UC, with a score of −0.219. Although
another compound, an isoindoline carboxamide (ChemBridge 5186324),
scored higher than topiramate by our method, we focused on topiramate
for experimental validation because it is a Food and Drug Administra-
tion (FDA)–approved compound known to be generally safe in humans
and is readily available for clinical use.

Experimental validation of topiramate as an
indication for IBD
To determine whether our in silico drug indication predictions would
translate into therapeutic efficacy in vivo, we tested whether topiramate
would show efficacy for IBD by means of a TNBS-induced rat model
of IBD. We performed an initial pilot validation experiment followed
by two independent replication experiments in male Sprague-Dawley
rats given TNBS [5% (w/v) total of 100 mg/kg] intrarectally to induce
colitis. One group was not induced with TNBS and was treated with
vehicle only, another group was induced with TNBS and treated with
vehicle (TNBS + vehicle), and the third group was induced with TNBS
and treated with topiramate (80 mg/kg per day) by oral gavage (TNBS
+ topiramate). A fourth group that was induced with TNBS and treated
with prednisolone (3 mg/kg per day) served as a positive control
(TNBS + prednisolone). After the initial TNBS induction, animals
were treated for 7 consecutive days, and the induced IBD phenotype
was assessed in vivo by video endoscopy at days 3 and 7.

Disease severity was assessed over the course of treatment by ob-
servation of clinical signs and by gross inspection of affected colon tis-
sues after treatment termination. Animals treated with both prednisolone
(TNBS + prednisolone) and topiramate (TNBS + topiramate) exhibited
reduced incidence of diarrhea over the course of treatment compared
to affected animals administered vehicle alone (TNBS + vehicle) (Fig. 2).
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Fig. 2. Effect of topiramate on clinical evaluation of IBD severity. For
each study day, treatment groups were scored by percent of animals
with diarrhea within each group (n = 12 animals per group). The pre-
ponderance of diarrhea was found to be significantly different among
treatment groups (one-way ANOVA, P < 0.005). IBD-induced animals
treated with topiramate (TNBS + topiramate) exhibited significantly re-
duced diarrhea over the course of the study compared to the respective
control (TNBS + vehicle; Tukey-Kramer test, P < 0.05).
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Clofibrate

Metformin
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Butein

Demecolcine
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Cytochalasin B

Flufenamic acid
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Oxaprozin

Calmidazolium

Trifluoperazine

Gefitinib

Fluphenazine
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rottlerin

Deferoxamine

Colforsin

Nitrendipine

Prochlorperazine

Trichostatin A

Fisetin

Vorinostat

Tyrphostin AG-825

Sirolimus

Azathioprine

Dimethyloxalylglycine

Phenanthridinone

Yohimbine

Fig. 1. Significant drug-disease scores for Crohn’s disease (CD). The names of
the drugs are placed along the bottom axis, and the vertical bars above the
drug name indicate the computationally predicted therapeutic score for the
drug based on comparison of the gene expression signature of the drugwith
the gene expression signature of CD. A positive score indicates that the drug
exhibits an expression pattern that is synergistic with the disease, whereas a
negative score indicates that the drug exhibits an expression pattern that is
oppositional to the disease. Drugs are sorted from left to right starting with
those predicted to be most efficacious for the disease. Green bars indicate
drugs that are discussed in the text. The red triangle points toward the anti-
convulsant drug topiramate, which was selected for experimental validation.
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Assessment of colitis by visual inspection of endoscopy video captured
on day 7 of treatment and scoring of disease severity demonstrated re-
duced gross pathological inflammation and ulceration in the topiramate-
and prednisolone-treated groups relative to the untreated (TNBS + vehicle)
group (Fig. 3A and videos S1 to S4). Quantitative assessment of the
gross pathological characteristics revealed that animals in the topiramate-
treated group (TNBS + topiramate) exhibited significantly reduced
swelling, ulceration, and other gross pathological characteristics com-
pared to animals in the untreated (TNBS + vehicle) group (P < 0.0001,
Mann-Whitney U test; n = 12 per group) (Fig. 3B).

Microscopic damage was assessed by histopathology analysis of
fixed colon tissue sections harvested at the conclusion of the dosing
schedule. Visual inspection of fixed colon tissues revealed extensive
destruction of the colon mucosal layer in the untreated colitis-induced
group (TNBS + vehicle), which was substantially ameliorated in colitis-
induced animals receiving topiramate (TNBS + topiramate) (Fig. 3C).
Quantitative evaluation demonstrated significantly reduced microscopic
damage in animals treated with topiramate compared to animals in the
untreated (TNBS + vehicle) group (P<0.05,Mann-WhitneyU test;n=12
per group) (Fig. 3D). Together, these data provide evidence that topiramate
exhibits efficacy against IBD in the TNBS model, as predicted by our
computational method.

Expression signature evaluation
The predicted efficacious relationship be-
tween IBD and topiramate was inferred
from public data, suggesting that partic-
ular sets of genes would exhibit oppo-
sitional expression between drug and
disease. Comparative visual inspection of
the Crohn’s and topiramate expression
signatures revealed the expected antithet-
ical expression patterns between the drug
and the disease, and functional enrichment
analysis indicated that genes involved with
gastrointestinal disease, inflammatory re-
sponse, andother immune-related functions
were reciprocally expressed between the
drug-affected and the disease-affected con-
ditions (Fig. 4A).

We performed quantitative polymer-
ase chain reaction (qPCR) analysis spot
checks of postmortemcolon tissues to eval-
uate whether the expected expression pat-
terns of genes reflected in the public gene
expression data driving our prediction
were observed in the animal validation
study. We randomly selected eight genes
for qPCR analysis from those genes ex-
hibiting opposing expression patterns
between drug and disease expression sig-
natures and for which commercial pri-
mers were available (see Materials and
Methods). qPCR analysis revealed that
two of these genes,TRPV1 and IFI30, were
differentially expressed between treat-
ment groups in the direction expected
from comparison of the public molecular
data (Fig. 4B).TRPV1was significantly up-

regulated in the topiramate-treated group (TNBS + topiramate) relative
to the untreated disease-induced group (TNBS + vehicle) (P < 0.05,
Mann-Whitney U test; n = 12 per group), and IFI30 was significantly
down-regulated in the topiramate-treated group relative to the un-
treated disease-affected group (TNBS + vehicle) (P < 0.005, Mann-
Whitney U test; n = 12 per group). These findings corroborate the
expected oppositional relationships between these genes reflected in
the expression signatures that were used to computationally predict
an efficacious relationship between topiramate and IBD.

DISCUSSION

Using an in silico approach based on the integration of publicly avail-
able gene expression data, we inferred that the anticonvulsant topiramate
was a potential new therapeutic agent for IBD and performed an ex-
perimental validation that confirmed topiramate’s efficacy in ameliorat-
ing a TNBS-induced rodent model of IBD. The precise mechanism of
action for topiramate is unknown, but it is known to enhance the ac-
tivity of g-aminobutyric acid (GABA)–activated chloride channels, ac-
tivate kainate and AMPA receptors, and inhibit the activity of some
carbonic anhydrase enzymes (8). Topiramate is administrated orally
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Fig. 3. Effect of topiramate on pathological assessment of IBD severity. (A) Clinical endoscopy captured
from live animals on day 7 of the study. (B) Gross pathology score. (C) Micrographs of H&E-stained colon
tissues showing microscopic damage to the mucosal and epithelial layers of the colon wall between treat-
ment groups. (D) Macroscopic damage score assessed from light microscopy of fixed colon tissues. Data
graphs represent the mean and SEM estimated from three independent experiments (n = 12 rats per
group). *P < 0.05; ****P < 0.00005, two-sided Mann-Whitney U test.
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* Prednisolone = established compound for Crohn’s disease
** Trinitobenzene Sulfonic Acid (TNBS)

Dudley et al, Sci Trans Med 2011
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Immunofluoressence using anti-LC3 antibody

1 - Rapamycin, 2 - Fasudil,

3 - Trifluoperazine, 4 - 2DOG,

NT - Untreated
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2 Autophagy Volume 6 Issue 8

not known. ROCKs, existing as two iso-
forms (ROCK1 and ROCK2), are Ser/
Thr protein kinases, which are down-
stream targets of the small GTPase RhoA. 
ROCKs regulate a wide range of biological 
functions including cell growth, migra-
tion and apoptosis. Since knockdown of 
both ROCK1 and 2 results in autophagy 
activation, the effect of fasudil on autoph-
agy is likely mediated by its known inhibi-
tory effect on these proteins. However, 
whether and how cytoskeletal changes 
due to Rho/ROCK inhibition results in 
activation of UPS and autophagy remain 
unknown. Activation of ROCKs by GTP-
bound Rho results in phosphorylation of 
various target proteins. One of the main 
substrates of ROCK is myosin light chain 
(MLC) that stimulates myosin-actin 
interactions. Other downstream targets 
of ROCKs include the Ser/Thr kinases 
LIM kinase 1 and 2 (LIMKs). Besides 
the action on MLC, which underlies its 
therapeutic effect against vasospasm, 
fasudil appears to have other cellular 
effects. Substrates of ROCK, for example, 
include the glial fibrillary acidic protein, 
neurofilaments that upon phosphoryla-
tion by ROCK undergo depolymeriza-
tion and microtubule-associated protein 
2 (MAP2). Based on results obtained in 
animal models, ROCK inhibitors have 
been proposed to slow down the degenera-
tive process in Alzheimer disease by reduc-
ing toxic levels of Aβ42 and stimulating 
regenerative growth of neurites. Moreover, 
peripheral delivery of fasudil reduces 
neuronal death and epilepsy in mice and 
improves spatial cognition and memory in 
rats. Whether these effects are mediated 
by enhancing autophagy is an interesting 
hypothesis which warrants further studies. 
Nevertheless, these studies suggest that 
fasudil is able to cross the blood-brain-
barrier and to reach therapeutic concen-
trations in the brain, at least in rodents. In 
summary, fasudil is a clinically approved 
drug with potential applications to vari-
ous human disorders where enhancement 
of autophagy can provide clinical benefit.

inducer via a high throughput drug screen-
ing approach. Fasudil, a ROCK inhibitor 
used to reverse blood vessel spasm occur-
ring after subarachnoid hemorrhage, was 
not previously directly linked to autoph-
agy. Besides subarachnoid hemorrhage, 
clinical applications of fasudil include var-
ious types of cardiovascular diseases, such 
as acute ischemic stroke, stable angina 
pectoris, coronary artery spasm, heart 
failure-associated vascular resistance and 
constriction, pulmonary arterial hyper-
tension, essential hypertension, athero-
sclerosis and aortic stiffness. Interestingly, 
previous studies have shown that Y-27632, 
an analog of fasudil not currently approved 
for clinical use, is effective at reducing the 
aggregation of several poly-glutamine pro-
teins, including mutant huntingtin. This 
effect was attributed to enhancement 
of degradation by macroautophagy and 
the ubiquitin proteasome system (UPS), 
mediated by inhibition of ROCK 1 and 
2. Interestingly, in our drug network, in 
contrast to fasudil, Y-27632 was found 
close to other small molecules functioning 
as UPS modulators, raising the hypothesis 
that the effects of Y-27632 on UPS are 
stronger than those on autophagy.

The mechanism resulting in the 
enhancement of autophagy by fasudil is 

a single synthetic “consensual” transcrip-
tional response is generated for each drug, 
and a drug network is built considering 
similarities in the consensual transcrip-
tional responses. The small molecules 
in the network are then automatically 
grouped in modules termed “communi-
ties” (i.e., groups of densely intercon-
nected nodes). Analyses of the network 
reveal that each community contains a set 
of drugs (i.e., nodes) enriched for a given 
mode of action. Thus, the drug network 
is effective for the classification of drugs 
and for predicting their modes of action. 
MANTRA turns out to be effective also at 
finding candidates for drug repositioning, 
i.e., the identification of new applications 
for existing drugs.

Specifically, the drug network was used 
to identify new autophagy enhancer drugs. 
Using 2-deoxy-D-glucose (2DOG), a 
known inducer of autophagy, to interro-
gate the drug network, MANTRA gener-
ated a list of drugs that were predicted to 
share a similar mode of action to 2DOG, 
including fasudil, thapsigargin, trifluo-
perazine and gossypol. Of these, thapsi-
gargin, trifluoperazine and gossypol are 
previously known inducers of autophagy 
(Fig. 1). Interestingly, trifluoperazine was 
previously repositioned as an autophagy 

Figure 1. Neighborhood of 2-deoxy-D-glucose in the drug network. Each dot corresponds to a 
drug of the network and edge thickness is proportional to similarity in the drug-induced tran-
scriptional responses. In green are shown drugs previously known to induce autophagy.

1 2 3 4 NT

1 Fasudil 0.5162

2 Thapsigargin 0.5644

3 Trifluoperazine 0.577

4 Gossypol 0.633

5 Niclosamide 0.6539

... ... ...

2DOG	  neighborhood
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Data Integration
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= ?
how to compute 

genome-wide similarity

Iskar et al, PLoS Comp Biol 2010

Plaisier et al  Nucleic Acids Res 2010
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Causal Reasoning upon drug treatment

Kin et al, PLoS Comp Biol 2010

1) identification of a disease gene expression signature

2) identification of paths from genomic alterations to the 
genes in the signature through a network of molecular 
interactions

Pham et al, PNAS 2011

in this case the signature is connected to a number of literature derived hypotheses on the MoA of the drug 

Kin et al, PLoS Comp Biol 2010

Liu et al, Genome Biol 2007



Causal Reasoning: open problems

- It is not trivial to chose an a-priori-known map of pathways or molecular 
interactions that is the best trad-off between reliability and 

exhaustiveness and upon which experimental data can be calibrated

- different graph-theory algorithms have been proposed to link putatively 
causal nodes to “affected” genes but none of them is based on solid 

biological arguments
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Conclusions

1) The potential of the massive quantity of public available gene expression data has not been 
fully exploited

2) A significant number of published works showed that it is possible to identify drug 
repositioning opportunities by using genome-wide signature-matching methods

3)  If coupled with recently developed “causal-reasoning” techniques the methods in (2) could 
provide the basis for the development of robust and efficient computational platforms for 
systematic drug discovery and re-purposing

4) this would open “De-facto” a new Golden-Age for DNA-microarray technology
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