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Functional interpretation of genes?

Biological/experimental:

• Physical-biochemical characterisation

• Biochemical function (kinase, transcription factor)

• Regulatory connections

• Pathway (signalling, metabolic)

Computational:

• GO category of gene or gene set

• Pathway membership

• Connection to annotated and characterised genes
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First step: enrichment analysis

• Given collection of pathways (GO, KEGG, Biocyc)

• Priority gene list from experiments (microarrays, GWAS
SNP)

• Which pathways have more than random overlap with
gene list?

• Hypergeometric test or GSEA (gene set enrichment
analysis, weighted Kolmogorov-Smirnov test)
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Next step: more details

Want to know which are specific genes interacting with genes
from list

• Direct protein-protein interaction

• In a common protein complex

• Jointly lethal (know both out cell not viable any more)

• Direct transcription regulation (binding upstream and
modulating gene expression)

• Co-transcribed, co-expressed
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Strategies

• Predict individual interaction partners for gene: classifier
that specific pair interaction exists or not

• List of genes which are related to seed genes sorted by
priority: network analysis

• Interaction partners and related genes can throw light on
function of seed genes, propagate annotation
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Integration of several predictors

• Do two proteins interact or not

• Several sources of evidence: experimental (Y2H),
computational (literature, GO categories)

• Different quality of predictors

• Assess quality of predictors

• How to combine predictors taking quality into account?



Classifier Propagation

Quality of predictors

Predictor M

Interaction I = 1: probability M says ’yes’, true positive rate

P(M = 1 | I = 1)

No interaction I = 0: probability M says ’no’, true negative
rate

P(M = 0 | I = 0)

Both should be high for a good predictor (away from 0.5 or
prior P(M))
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Obtain quality from gold standard

For a gold-standard set of known interactions estimate

P(M = 1 | I = 1) =
number {I = 1 and M = 1}

number {I = 1}

Run predictor on gold standard set, count successes and
failures

Possible: run without gold standard set, I hidden variable,
train with Expectation-Maximisation (EM) algorithm if several
predictors are available

Converges on (hidden) consensus solution among predictors
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Posterior odds

If predictor says yes, how much more likely is interaction than
noninteraction?

P(I = 1 | M = 1)

P(I = 0 | M = 1)

but we only have P(M = 1 | I = 1) (the wrong way round)

P(I = 1 | M = 1) =
P(M = 1 | I = 1)P(I = 1)

P(M = 1)

Bayes: posterior = likelihood * prior / normalisation to 1
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Bayes factor

If predictor says interaction M = 1, how much more likely is
interaction than noninteraction?

P(I = 1 | M = 1)

P(I = 0 | M = 1)
=

P(M = 1 | I = 1)P(I = 1)

P(M = 1 | I = 0)P(I = 0)

posterior odds = bayes factor * prior odds

Convert odds to probabilities

o =
P(I = 1 | M = 1)

P(I = 0 | M = 1)

P(I = 1 | M = 1) =
o

1 + o
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Cutoff for posterior odds

Depends on costs of false discovery CFD vs false nondiscovery
CFND

Costs minimised for discovery whenever

posterior odds >
CFD

CFND
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Naive Bayes

Three (lousy) classifiers with

P(Mi = 1 | I = 1) = 0.7

P(Mi = 0 | I = 0) = 0.6

Assume M1 = 1, M2 = 1, M3 = 0 and P(I = 1) = 0.5

P(I = 1 | M)

P(I = 0 | M)
=

∏
P(Mi | I = 1)∏
P(Mi | I = 0)

=
0.7 ∗ 0.7 ∗ 0.3

0.4 ∗ 0.4 ∗ 0.6

P(I = 1 | M1,M2,M3) = 1.53/(1 + 1.53) = 0.6
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Hierarchical Naive Bayes

Additional dependencies
since methods in G1, G2 are
related

Dependencies among
methods (over and above
interaction) distort Bayes
factors

True G1,G2 unknown (no gold standard)
more complex algorithm (EM, variational) for estimation
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Naive Bayes with tree dependence

Tree models dependence
between predictors
conditional on I

Good tree can be easily estimated by Chow-Liu procedure:

Complete graph with edges weighted by conditional (on I )
mutual information
Find maximum weight spanning tree (add heaviest edge to
growing forest)
This is a maximum likelihood tree!
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ContextPixie

(from Myers,
Troyanskaya,
2007)

Intensity of red: area under ROC of classifying genes from GO
sets correctly in leave-one-out
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ContextPixie

(from Myers,
Troyanskaya, 2007)

The biological context helps to pick suitable true/false positive
rates P(Di = di | F = i ,C = c) in naive Bayesian classifier
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What can we hope for, Lee et al., 2011

HDF: Host factors for
HIV

Genes modulating Oct4
(stemness regulator)

KRAS interaction
partners with lethal
knockdowns in colorectal
cancer cell line

HumanNet covers about 500,000 links between 87% of human
proteins
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Label propagation in network

(from Wang, Marcotte, 2010)

• Weighted edges between
nodes

• Values on nodes (eg +1 for
GO class genes, -1 for all
others)

• Some values known (blue)

• Propagation to other nodes

Types of methods:
direct neighbour propagation, indirect neighbour propagation
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Direct neighbour propagation

Direct neighbours of seed nodes get weighted average values
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Indirect neighbours: iterative ranking

Basis of Google ranking (PageRank)

Graph of nodes with edge weights Wij

Given background values fi ,0 for each node

Each node i gets new value fi composed of:

• a proportion of background αfi ,0

• weighted sum of neighbor values (1− α)
∑

j Wij fj

f (t + 1) = αf (0) + (1− α)Wf (t)
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Iterative ranking solution

Iterative ranking converges towards stationary solution

f − (1− α)Wf = αf (0)

or
f = α(I − (1− α)W )−1f (0)

if largest absolute eigenvalue of (1− α)W is less than 1

(Iterative method might be more efficient than inversion of
big, although sparse, matrix)
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Indirect neighbours: Gaussian smoothing

Find f that minimizes

Q(f ) =
1− α

2

∑

i ,j

Wij(fi − fj)
2 + α

∑

i

(fi − fi(0))
2

Wij(fi − fj)
2 encourages similar f ’s for neighbours with strong

connection Wij

(fi − fi(0))
2 ties values f to known initial values f (0) (eg

+1,-1 for known labels, and 0 else)

(Note: factor of 1/2 missing in almost all papers on this topic,
don’t rely on equations in papers)
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Gaussian smoothing solution

With D = diag(di) = diag(
∑

j Wij)

Q(f ) = (1− α)f ′(D −W )f + α(f − f (0))′(f − f (0))

after (vector) differentiation by df and setting to 0

(1− α)(D −W )f + αf − αf (0) = 0

or
f = α(S − (1− α)W )−1)f (0)

with S = αI + (1− α)D

Is iterative ranking when D = I , ie
∑

j Wij = 1
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Indirect propagation results

(from Wang, Marcotte, 2010)

Gaussian smoothing basis of GeneMANIA (Mostafavi et al., 2008)
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Comparison of methods, Wang, Marcotte, 2010

C. elegans abnormal
locomotion genes

10-fold cross validation
ROC curves, ie, 10 times:
90% as seed genes, 10%
query genes

Indirect methods overall
better, better for FP rate

Direct methods not too
bad, particularly for low
FP rates
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Comparison of methods, Wang, Marcotte, 2010

C. elegans causal genes in
318 RNAi phenotypes

10-fold cross validation
ROC curves, ie, 10 times:
90% as seed genes, 10%
query genes

Similar results for yeast
network

Circuit-based: voltage in circuit with weights as 1/resistance,
MCL clustering based on graph flow
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Combining matrices in GeneMania

Best µi for K =
∑

µiKi?

• From seed genes derive matrix T with Ti j positive if i , j
in seed set, negative if one is in the other out, NA else

• Vectorize T into t dropping NAs by columns

• Vectorize each Ki and collect vectors as columns in
matrix Ω

• Solve regularized regression by minimizing

(Ωµ− t)′(Ωµ− t) + (µ− µ0)
′S(µ− µ0)

with some regularisation parameters µ, S since Ω is sparse
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Thoughts

• Rapidly growing databases (HumanNet)

• Situation promising for key organisms (yeast, C. elegans,
mouse, human)

• Usable precision recall achievable with combination of
sources and networks

Still missing

• Link with more mechanistic aspects (regulation,
signalling)

• Neglected organisms (most!)

• Quality control in danger of circularity (ubiquituous GO,
KEGG) and networks
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