Reviews in Computational Biology:

Can biophysical properties of PPIs improve the network descriptions of metabolism?

James Smith

Department of Biochemistry, University of Cambridge

History of Network Biology

History of Network Biology

1. Protein-Protein Interactions

1. Protein-Protein Interactions

Is there a precise definition within the range of biomolecular interactions?

1. Protein-Protein Interactions

- Protein-pairs, direct physical contact, specific-distinct interface, functional role

1. Protein-Protein Interactions

- Protein-pairs, direct physical contact, specific-distinct interface, functional role
- Surface complementarity, well-defined interface, includes clusters of residues

1. Protein-Protein Interactions

- Protein-pairs, direct physical contact, specific-distinct interface, functional role
- Surface complementarity, well-defined interface, includes clusters of residues

- Concerted binding of SSEs, localised disordered to ordered transitions of SSEs

Methods to identify PPIs

Methods to identify PPIs

> Most widely used is the combination of Yeast Two-Hybrid with Tandem Affinity Purification coupled with Mass Spectrometry

Methods to Predict PPIs

- Rosetta Stone infers protein linkage from genomic analyses
- Phylogenetic Profile identifies genes that are correlated across genomes
- Conserved Gene Neighbour identifies proximal genes across genomes
- Operon/Gene Cluster
can assign putative function to unknown genes

Example Databases of PPIs

2. Biophysics of PPIs

Biophysics of the PPI complex

- Most detail comes from structural biology

Biophysics of the PPI complex

- Most detail comes from structural biology
- Obligatory and Non-obligatory Complexes

Biophysics of the PPI complex

- Most detail comes from structural biology

- Obligatory and Non-obligatory Complexes

Contact area and polarity of the interfaces of various nonobligate and obligate complexes. Obligate complexes with a small and hydrophobic interface include coiled-coil proteins. The ellipse denotes the contact area-polarity space of weak transient interactions.

Biophysics of the PPI complex

- Most detail comes from structural biology
- Obligatory and Non-obligatory Complexes
- Permanent or Transient Complexes

Biophysics of the PPI complex

- Most detail comes from structural biology
- Obligatory and Non-obligatory Complexes
- Permanent or Transient Complexes

Biophysics of the PPI complex

- Most detail comes from structural biology
- Obligatory and Non-obligatory Complexes
- Permanent or Transient Complexes

Biophysics of the PPI complex

The protein networks found underline the multispeciticity and dynamics of PPIs involving transient interactions, since many proteins were shown to be involved in more than one multiprotein complex or binary interaction. These multicomponent transient complexes have yet to be characterized in terms of their detailed structures or energetics. We can expect the full range of interactions, from rigid to dynamic, weak to strong, obligate and non-obligate. The functional rationale for many of these complexes is not known, and ultimately the optimization of function during evolution will be the key determinant of the observed character of each complex.

Thoughts on the Biophysical Properties of Complexation of Transient PPIs?

What's happening at the molecular level (temporally and spatially)?

Thoughts on the Biophysical Properties of Complexation of Transient PPIs?

- Small scale: on-rates
affinity driven - long range attractions eg electrostatics, solvation and ionic milieu
- Small scale: off-rates min destabilising but max stabilising intermolecular contact area
- Small scale: reordering and stabilising secondary \& tertiary structure

Studies on the Biophysical Properties of Complexation of Transient PPIs?

Current Opinion in Structural Biology
Volume 10, Issue 2, 1 April 2000, Pages 153-159
Electrostatic aspects of protein-protein interactions Felix B Sheinerman $\sqrt{\square}$, Raquel Norel \boxtimes, Barry Honig

peds

3

Transient protein-protein interactions
Protein Engineering, Design and Selection (2011) 24(9): 635-648 first published online June 15, 2011

Free-energy distribution of binary protein-protein binding suggests cross-species interactome differences

Yi Y. Shi*, Gerald A. Miller ${ }^{\dagger}$, Hong Qian ${ }^{*}$, and Karol Bomsztyk ${ }^{\text {ts }}$
Departments of *Applied Mathematics, ${ }^{\dagger}$ Physics, and ${ }^{\dagger}$ Medicine, University of Washington, Seattle, WA 98195
Communicated by Ernest M. Henley, University of Washington, Seattle, WA, May 25, 2006 (received for review April 19, 2006)

ANCHOR: a web server and database for analysis of protein-protein interaction binding pockets for drug discovery

Lidio M. C. Meireles ${ }^{1}$, Alexander S. Dömling ${ }^{2,3, \star}$ and Carlos J. Camacho ${ }^{1}$

Biological Protein-Protein Interaction Prediction Using Binding Free Energies and Linear Dimensionality Reduction

L. Rueda ${ }^{1}$, Carolina Garate ${ }^{2}$, Sridip Banerjee ${ }^{1}$, and Md. Mominul Aziz ${ }^{1}$
${ }^{1}$ School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
\{1rueda, banerje1, azizc\}@cs.uwindsor.ca
${ }^{2}$ Department of Computer Science, University of Concepcion, Concepcion, Chile
cgarate@udec.cl

Abstract. An important issue in understanding and classifing proteinprotein interactions (PPI) is to characterize their interfaces in order to discriminate between transient and obligate omplexes. We propose a classification approach to discriminate between these two types of complexes. Our approach uses contact and binding free energies of the residues present in the interaction, which are the input features for the classifiers. A total of 282 features are extracted for each complex, and the classification is performed via recently proposed dimensionality reduction (LDR) methods, including the well-know Fisher's discriminant analysis and two heteroscedastic approaches. The results on a standard benchmark of transient and obligate protein complexes show that LDR approaches achieve a very high classification accuracy (over 78%), outperforming various support vector machines and nearest-neighbor classifiers. An additional insight on the proposed approach and experiments on different subsets of features shows that solvation energies can be used in the classification, leading to a performance comparable to using the full binding free energies of the interaction.

Thoughts on the Biophysical Properties of Complexation of PPIs?

What's happening at a larger scale of organisation?

Thoughts on the Biophysical Properties of Complexation of PPIs?

- Large scale: self-organisation around cellular architecture (cytoskeleton, organelles)
- Large scale: transcriptional changes during the cell cycle or under nutrient stress

Example References

```
Physical Biology > Volume \(2>\) Number 2
```

Ozlem Keskin et al 2005 Phys. Biol. 2 S24 doi:10.1088/1478-3975/2/2/S03
Protein-protein interactions organization, cooperativity and mapping in a bottomup Systems Biology approach

Ozlem Keskin ${ }^{1,2}$, Buyong Ma ${ }^{2}$, Kristina Rogale ${ }^{3}$, K Gunasekaran ${ }^{2}$ and Ruth Nussinov ${ }^{2,4}$

The large-scale organization of metabolic networks

H. Jeong ${ }^{\dagger}$, B. Tombor \dagger, R. Albert ${ }^{\star}$, Z. N. Oltvai \dagger \& A.-L. Barabási ${ }^{\dagger}$

Nature 444, 383-386 (16 November 2006) | doi:10.1038/nature05201; f
4 September 2006; Published online 15 October 2006

Visualization of transient encounter complexes in protein-protein association

Chun Tang ${ }^{\frac{1}{1}}$, Junji Iwahara ${ }^{1}$ \& G. Marius Clore ${ }^{1}$

1. Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA

Correspondence to: G. Marius Clore ${ }^{1}$ Correspondence and requests for materials should be addressed to G.M.C.
(Email: mariusc@intra.niddk.nih.gov).

Protein-protein interaction networks: howcan a hub protein bind so many different partners? Trends in Biochemical Sciences, Volume 34, Issue 12, December 2009, Pages 594-600 Chung-Jung Tsai, Buyong Ma, Ruth Nussinov View Abstract

Research article

The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles
Pawel Durek* and Dirk Walther

3. Graph and Network representations

Graph and Network representations

Algorithms for Molecular Biology
BioMed Central

Research
 Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations

Open Access

Elena Zotenko ${ }^{1,2}$, Katia S Guimarães ${ }^{1,3}$, Raja Jothi ${ }^{1}$ and Teresa M Przytycka* ${ }^{* 1}$

Abstract

Background: Most cellular processes are carried out by multi-protein complexes, groups of proteins that bind together to perform a specific task. Some proteins form stable complexes, while other proteins form transient associations and are part of several complexes at different stages of a cellular process. A better understanding of this higher-order organization of proteins into overlapping complexes is an important step towards unveiling functional and evolutionary mechanisms behind biological networks.

Results: We propose a new method for identifying and representing overlapping protein complexes (or larger units called functional groups) within a protein interaction network. We develop a graph-theoretical framework that enables automatic construction of such representation. We illustrate the effectiveness of our method by applying it to TNF $\alpha / \mathrm{NF}-\kappa \mathrm{B}$ and pheromone signaling pathways.

Conclusion: The proposed representation helps in understanding the transitions between functional groups and allows for tracking a protein's path through a cascade of functional groups. Therefore, depending on the nature of the network, our representation is capable of elucidating temporal relations between functional groups. Our results show that the proposed method opens a new avenue for the analysis of protein interaction networks.

Naïve Maximal Clique Overlap Representation

Maximal Cliques

A 1,2,3
B $3,4,5,6$
C $3,5,6,7$
D $\quad 5,6,7,8$
E $\quad 5,8,9,10,11$
F 6,7,8,12
G $12,13,14,15$
H 14,15,16
I $\mathbf{1 5 , 1 7}$
(b)

1,2		$9,10,1$	
3		12	
	4		13
	5		14
	6		15
7		16	
	8		17

(e)

Figure 2
A Hypothetical Protein Interaction Network. (a) A hypothetical protein interaction network. (b) A list of all maximal cliques in the network. (c) A naive representation of overlaps between maximal cliques. Each maximal clique is a node and there is an edge between two maximal cliques if and only if they share a protein. (d) The clique tree representation. Once again, every maximal clique is a node, but the cliques are connected in such a way that the resulting graph is a tree. Moreover, cliques that contain a given protein form a connected subgraph. (e) This color scheme is used to show the subtree of every

(b)

Figure 3
TNF $\alpha /$ NF- $\boldsymbol{\kappa}$ B Signaling Pathway. The TNF $\alpha /$ NF- κ B signaling pathway. (a) The network. (b) The Tree of Complexes representation. The flow of action is visually represented by background colors: green for activators (IKKs) and yellow for inhibitors (IKBs , and pl 100). The NIK kinase is in the first functional group (A), together with all three members of the IKK complex and plo0. Functional group B includes, in addition to p 100 , the $I_{K K s}$ and two inhibitors $I_{K} B \alpha$ and $I_{\kappa} B \beta$. This group is the beginning of interaction between IKKs and $I_{\kappa} B s$. Functional group C loses some of the IKKs, continues to show $I_{\kappa} B$ and begins to show interaction between $\mathrm{I} \kappa \mathrm{Bs}$ and NF - $\kappa \mathrm{B}$ factors. Finally, in group E we see the entrance of NIK -independent Col-Tpl2 kinase.

(a)

$A=H S C B 2 \wedge B U D 6 \wedge S T E 11$
$B=B U D 6 \wedge(S P H 1 \vee S P A 2) \wedge S T E 11$
$C=(S P H 1 \vee S P A 2) \wedge(S T E 11 \vee S T E 7) \quad D=S P H 1 \wedge(S T E 11 \vee S T E 7) \wedge F U S 3$
$E=S T E 5 \wedge(S T E 11 \vee S T E 7) \wedge(F U S 3 \vee K S S 1) F=(F U S 3 \vee K S S 1) \wedge D I G 1 \wedge D I G 2$
$G=(F U S 3 \vee K S S 1) \wedge M P T 5$
$H=(M K K 1 \vee M K K 2) \wedge(S P H 1 \vee S P A 2)$

Figure 4
Pheromone Signaling Pathway. The pheromone signaling pathway. (a) The network. (b) The Tree of Complexes representation. For the description of the elements of the tree see the text.

4. Descriptions of Metabolic Networks

- Several databases exist for gene/ enzyme/reaction/pathway reconstruction of metabolic pathways
- KEGG, Meta-Cyc, Pathway Tools, ERGO, metaTIGER, ENZYME, Brenda, ModelSEED

Descriptions of Metabolic Networks

- Metabolite-centric views

LIFE

Biotransformations
Nodes are metabolites
Links are enzymes

Descriptions of Metabolic Networks

- Metabolite-centric views
- Gene/Enyzme/Reaction-centric views

Enzyme classification numbers or
Gene Ontology numbers
are used here

Descriptions of Metabolic Networks

- Metabolite-centric views
- Gene/Enyzme/Reaction-centric views
- Bipartite representation

Descriptions of Metabolic Networks

- Metabolite-centric views
- Gene/Enyzme/Reaction-centric views
- Bipartite representation
- Could we have a multipartite representation for PPIs?

Example Multipartite Representation

Addition of PPIs to the network (edges define physical associations)
\rightarrow direction of (obligatory) transient PPI on cytoskeleton for catalysis of metabolic intermediate
\longrightarrow direction of (obligatory) permanent PPI in membrane for transport of metabolites

Example Multipartite Representation

- Adding PPIs to the network reveals local functionality - Adding biophysical information describes the nature of the PPIs

Addition of PPIs to the network (edges define physical associations)
\rightarrow direction of (obligatory) transient PPI on cytoskeleton for catalysis of metabolic intermediate
\longrightarrow direction of (obligatory) permanent PPI in membrane for transport of metabolites

Network-based prediction of metabolic enzymes' subcellular localization

Shira Mintz-Oron ${ }^{1, *}$, Asaph Aharoni ${ }^{1}$, Eytan Ruppin ${ }^{2,3}$ and Tomer Shlomi4,*
${ }^{1}$ Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, ${ }^{2}$ School of Computer Science, ${ }^{3}$ School of Medicine, Tel-Aviv University, Tel-Aviv 69978 and ${ }^{4}$ Faculty of Computer Science, Technion, Haifa 32000, Israel

Fig. 3. Accuracy (a) and coverage (b) of enzyme subcellular localization predictions in a cross-validation test in the yeast S.cerevisiae. The average and standard error of the accuracy and coverage measures were calculated based on 10 applications of the prediction methods over randomly sampled sets of localized enzymes of similar size that are used as input.

Fig. 4. Enzyme subcellular localization prediction of two complete metabolic pathways, including the TCA cycle (black rectangles) and glyoxylate cycle (grey rectangles), and a subset of the ethanol oxidation athway (white rectags), give , enzymes in othe connected pathways (white ellipses) as input Transport reactions are marke by dotted arrows.

5. Functional units of PPIs

Descriptions for functional units of PPIs

- Small scale: as network motifs (directed, weighted, associated with $\Delta \mathrm{G}$ of binding)

Auto regulatory single protein

Annu. Rev. Biophys. 2010. 39:43-59

DYNAMICS OF SINGLE
 FEEDBACK LOOPS

Auto regulatory PPIs

Schematic illustration of negative and positive feedback loops along with their respective dynamical behavior. (a) Negative feedback stabilizes the output to a near-constant level and allows for fast transient increase in production in response to stress or perturbations. (b) If negative feedback is delayed, the protein concentrations may oscillate in time. (c) Positive feedback can result in bistability, i.e., the system can exist stably in either of two distinct steady states.

Feedback is an essential part of molecular networks. It allows the cell to adjust the repertoire of functional proteins to current needs.
Combinations of FLs in small-molecule uptake and metabolism can result in new behavioral features that are significantly different from a simple sum of the behaviors of single loops.

Descriptions for functional units of PPIs

- Small scale: as network motifs (directed, weighted, associated with $\Delta \mathrm{G}$ of binding)
- Larger scale: Location of PPI classes transient and permanent, obligate \& nonobligate
- Larger scale: Classes of PPIs associated with "Hubs" and "Loners" and essentiality.

Defining PPIs essential to metabolism

- PPIs associated network motifs as "hubs" in modules would be critical features in the metabolic network
- PPIs associated network motifs as inter-module links would also be critical to a metabolic network

Close large scale models of metabolic pathways

Graph of a modular scalefree structure

Graph of distributed "hubs" in modules

Integrated Bioinformatics for Radiation-Induced Pathway

Analysis from Proteomics and Microarray Data

Figure 6. RRM2 is involved in radiation-induced ATM-p53-mediated DNA repair pathway

Example References

Topological properties of protein interaction networks from a structural perspective

Attila Gursoy", Ozlem Keskin* and Ruth Nussinov $\dagger{ }^{1}{ }^{1}$

"Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey, \dagger Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCl-Frederick, Frederick, MD 21702, U.S.A., and \ddagger Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov 10. [Epub ahead of print]
Identification of Essential Proteins Based on Edge Clustering Coefficient.
Wang J, Li M, Wang H, Pan Y.
Central South University, ChangSha.
In silico network topology-based prediction of gene essentiality
João Paulo Müller da Silva, Marcio Luis Acencio, and Ney Lemke
Department of Physics and Biophysics, Institute of Biosciences,
São Paulo State University, UNESP, 18618-000, Botucatu, SP, Brazil
José Carlos Merino Mombach
Centro de Cièncias Rurais, Unipampa/Sāo Gabriel - Pós-Graduação em Fisica, Prédio 13, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brasil

Renata Vieira, José Camargo da Silva, and Marialva Sinigaglia

Summary

- Structural and experimental data reveals a wealth of PPIs
- Biophysical information defines the nature and class of PPIs
- PPIs are poorly represented in network descriptions
- Incorporating PPI biophysics could better describe the distribution of functional units in Metabolic networks.

