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1. Protein-Protein Interactions

to the organization37 and the relative contributions of the
physical/chemical components to their stability. Proteins
interact through their interfaces. Interfaces consist of interact-
ing residues that belong to two different chains, along
with residues in their spatial vicinity. Thus, interfaces consist
of fragments of each of the chains and some isolated
residues. Figure 1 illustrates some examples of protein-
protein interfaces. To analyze protein-protein interactions,
residues (or atoms) that are in contact across the two-
chain interface are studied. In addition, residues in their
vicinity are also inspected to explore the chemical effects
of their supporting matrix.32,38-42 At the same time, it
behooves us to remember that proteins are flexible. Proteins
that are free in solution exist in ensembles of intercon-
verting conformations. Backbones and side-chains move. In
addition, native proteins frequently populate distinct
minima that are separated by low, yet not so easy to
surmount, barriers. These conformers lie on the rugged

bottom of the funnel, reflecting multiple conformational
states and allosteric effects.43 Conformational and dynamic
allosteric effects are the outcome of binding to other
molecules, proteins, small molecules, or nucleic acids,
leading to population shifts. Such allosteric effects are the
hallmarks of functional regulation. Depending on the extent
of the conformational change in the binding site, they may
mislead predictions of protein-protein interactions. In view-
ing proteins as static structures, the properties of a particular
population are explored. Yet, if we consider hub proteins,
proteins with shared binding sites, or proteins involved in
regulation, different populations may preferentially associate
with different partners.
A large fraction of cellular proteins are estimated to be

“natively disordered”, i.e., unstable in solution.44-46 The
structures of disordered proteins are not “random”. Rather,
the disordered state has a significant residual structure.47-50
In the “disordered” state, a protein exists in an ensemble of
conformers. In many cases, these regions constitute only
certain parts or domains of the whole protein. Disordered
proteins are believed to account for a large fraction of all
cellular proteins and to play roles in cell-cycle control, signal
transduction, transcriptional and translational regulation, and
large macromolecular complexes.51 While disordered on their
own, their native conformation is stabilized upon binding.
The global fold of disordered proteins does not change upon
binding to different partners; however, local conformational
variability can be observed, inevitably complicating the
predictions of protein interactions.
The overriding reasons for the heightened interest in

protein-protein interactions are that better understanding
and better quantization of the key features controlling the
interactions should lead to higher success in the pre-
diction of protein associations.28,52,53 This would assist in the
elucidation of cellular pathways and in drug design. It
will also assist in figuring out the effects of crucial mu-
tations, which are often clustered in binding sites, as in
p53.54,55
Below, we aim to provide an overview of the principles

of protein-protein interactions. Within this framework, we
highlight what we consider are key components in the
question of “what are the preferred ways for proteins to
interact”. The goal is to be able to predict how the proteins
will interact. Our assumption is that the structures are
available and that there are experimental data that the proteins
do interact. In the absence of such data, docking the structures
of any pair of proteins will always find a matching patch of
surface that may appear favorable.56-58

1.2. Proteins are Flexible Molecules Even Though
We Frequently Treat Them as Rigid
When carrying out an analysis of protein-protein binding

interfaces, the routine procedure is to examine the complexes
as they are available in their crystal structures. Hence, the
protein is treated as a rigid molecule in that crystal
conformation. Yet, the conformation observed in the complex
is not necessarily the one that prevails in solution.59-62
Moreover, depending on its binding state, i.e., whether it is
already bound to another protein (or ligand) although at
another binding site, different prevailing conformational
states may be populated.63-66 Figure 2A illustrates the free
energy landscape and the shift in the populations and,
consequently, in the prevailing binding-site shape upon
binding to another protein at another site.

Figure 1. Illustration of protein-protein interfaces. (A) The figure
represents two interacting proteins (human glutathione S-transferase,
PDB ID: 10gs, Chains A and B). The two chains are colored yellow
and cyan. Interacting residues from the two chains are shown with
surface representation in order to emphasize the complementarity,
while the rest of the proteins are illustrated with ribbon representa-
tions. (B) The details of the interface of mouse monoclonal antibody
D1.3 (PDB ID: 1kir, Chains A (yellow) and B (cyan)). The H-bond
between Gln38 in Chain A and Gln 39 in Chain B and the salt
bridge between Arg96 in Chain A and Glu98 in Chain B are
highlighted.

Principles of Protein−Protein Interactions Chemical Reviews, 2008, Vol. 108, No. 4 1227
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Methods to identify PPIs

Taken from doi:10.1371/journal.ppat.0030042.g001

on their mass-to-charge ratios, thereby allowing the
identification of polypeptide sequences [36,52,53] (Figure 1B).
The problem of converting protein/peptide molecules from
the condensed phase into ions in the gas phase is solved by
using Electrospray Ionization (ESI) [54] and Matrix Assisted
Laser Desorption Ionization (MALDI) [55,56]. Different

algorithms have been developed to analyze mass spectra and
to identify proteins by their sequence [57–60]. Some of them
find correlations between theoretical and experimental
spectra while others use de novo algorithms to infer peptide
sequences from theoretical interpretation of the mass
spectra. Despite the usefulness of MS for the characterization

doi:10.1371/journal.ppat.0030042.g001

Figure 1. Schematic Representations of Main Experimental Techniques Used for High-Throughput Analysis of Protein Interactions

(A) Y2H detects interactions between proteins X and Y, where X is linked to BD domain which binds to upstream activating sequence (UAS) of a
promoter.
(B) MS identifies polypeptide sequence.
(C) TAP purifies protein complexes and removes the molecules of contaminants.
(D) Gene coexpression analysis produces the correlation matrix where the dark areas show high correlation between expression levels of corresponding
genes.
(E) Protein microarrays (protein chips) can detect interactions between actual proteins rather than genes: target proteins immobilized on the solid
support are probed with a fluorescently labeled protein.
(F) Synthetic lethality method describes the genetic interaction when two individual, nonlethal mutations result in lethality when administered together
(a! b!).

PLoS Computational Biology | www.ploscompbiol.org March 2007 | Volume 3 | Issue 3 | e420339
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Most widely used is the combination of 
Yeast Two-Hybrid with Tandem Affinity 

Purification coupled with Mass Spectrometry

ple, all proteins at one point ‘‘touch’’ the
ribosome, many touch chaperones, and
most make contact with the degradation
machinery. In many experimental assays,
such generic interactions are rightfully
filtered out. Therefore, the definition of
PPI has to consider (1st) the interaction
interface should be intentional and not
accidental, i.e., the result of specific
selected biomolecular events/forces; and
(2nd) the interaction interface should be
non-generic, i.e., evolved for a specific
purpose distinct from totally generic func-
tions such as protein production, degra-
dation, and others.

That PPIs imply physical contact be-
tween proteins does not mean that such
contacts are static or permanent. The cell
machinery undergoes continuous turnover
and reassembly. Some protein assemblies
are stable because they constitute macro-
molecular protein complexes and cellular
machines, for example ATP synthase
(eight different proteins in mammals) or
cytochrome oxidase (13 proteins in mam-
mals). These proteins included in com-
plexes are called ‘‘subunits’’. Other pro-
tein assemblies are only built to carry out
transient actions, for example, the activa-

tion of gene expression by the binding of
transcription factors and activators on the
DNA promoter region of a gene.

Another essential element for defining
PPIs is the biological context. Not all
possible interactions will occur in any cell
at any time. Instead, interactions depend
on cell type, cell cycle phase and state,
developmental stage, environmental con-
ditions, protein modifications (e.g., phos-
phorylation), presence of cofactors, and
presence of other binding partners.

PPI Determination by Two
Alternative Approaches: Binary
and Co-Complex

Experimental determinations of inter-
actions between proteins are done at either
a large or small scale with two main
technologies that produce different types
of PPI data. The techniques that measure
direct physical interactions between pro-
tein pairs are ‘‘binary’’ methods, while the
techniques that measure physical interac-
tions among groups of proteins, without
pairwise determination of protein part-
ners, are ‘‘co-complex’’ methods [9]. The
most often used binary and co-complex

methodologies are, respectively, yeast two-
hybrid (Y2H) [10] and tandem affinity
purification coupled to mass spectrometry
(TAP-MS) [11]. Both are widely applied in
large-scale investigations. Co-complex
methods measure both direct and indirect
interactions between proteins. The most
common approach is based on the pre-
selection of one protein tagged with a
molecular marker (the bait protein), which
is used to catch or ‘‘fish out’’ a group of
proteins (prey proteins) followed by a
biochemical technique to ‘‘pull-down’’
and separate them from a mix. In this
way, what takes place is a co-purification
of protein groups. Another common co-
complex approach, based on protein
antibody recognition, is co-inmunopreci-
pitation (CoIP) [5]. The experimental
results obtained with co-complex methods
are different from those obtained with
binary methods (Figure 1). Data derived
from co-complex studies cannot be direct-
ly assigned a binary interpretation. An
algorithm or model is needed to translate
group-based observations into pairwise
interactions. The spoke model is most
commonly used, as it produces the mini-
mal number of false positives [12]. An

Figure 1. Binary methods and co-complex methods: two approaches to determine PPIs. The two most widely used experimental
proteomic techniques applied to measure PPIs are yeast two-hybrid (Y2H) and tandem affinity purification coupled to mass spectrometry (TAP-MS);
the former technique is a binary method (which measures physical direct interactions between protein pairs), and the latter a co-complex method
(which measures physical interactions between groups of proteins without distinguishing whether they are direct or indirect). The interactions shown
in the left panel (green links) correspond to the true interactions existing between two groups of proteins (set A with four proteins and set B with
three proteins). The interactions shown in the right panels correspond to the networks derived from the experimentally measured interactions
existing between the six proteins analyzed: the network in the top right panel (blue links) presents the interactions obtained using a binary method;
the network in the bottom right panel (red links) presents the interactions obtained using a co-complex method. The red links are calculated applying
the spoke model to the TAP-MS experimental data, but three of the interactions deduced (links with an X) do not occur.
doi:10.1371/journal.pcbi.1000807.g001

PLoS Computational Biology | www.ploscompbiol.org 2 June 2010 | Volume 6 | Issue 6 | e1000807

Taken from doi:10.1371/journal.pcbi.1000807.g001

Methods to identify PPIs



Methods to Predict PPIs

additional evidence about functional linkage between their
constituent genes [2,7–10]. Analysis of gene order
conservation within three bacterial and archaeal genomes
found that 63%–75% of co-regulated genes interact
physically [7,11]. Similar results were obtained from two
eukaryotes, yeast and worm [12]. Moreover, it was found that
GN methods have higher coverage (about 37%) compared
with other genomic inference methods [11]. An interesting
example of GN involves the prediction of archael exosome by
comparing gene order in archaeal and eukaryotic genomes
[13]. The predicted archaeal exosomal superoperon was
confirmed later by the experiment [14] and was shown to
encode among other proteins two protein subunits of RNase
P. This suggested a possible interaction between RNase P and
the exosome in eukaryotes, a connection that was not
reported earlier.

Phylogenetic profile methods. The phylogenetic profile
(PP) method is based on the hypothesis that functionally
linked and potentially interacting nonhomologous proteins
co-evolve and have orthologs in the same subset of fully
sequenced organisms [9,15–19]. Indeed, components of
complexes and pathways should be present simultaneously in
order to perform their functions. A phylogenetic profile is
constructed for each protein, as a vector of N elements, where
N is the number of genomes (Figure 1B). The presence/
absence of a given protein in a given genome is indicated as
‘‘1’’ or ‘‘0’’ at each position of a profile. Proteins or their
profiles can then be clustered using a bit-distance measure,
and those proteins from the same cluster are considered
functionally related. Higher-order relationships between
several proteins also can be identified using extensions of PP
[20,21]. Phylogenetic profiles can also be identified for
protein domains instead of entire proteins [22]. A profile is
constructed for each domain and the presence/absence of the
domain in different genomes is recorded which in turn can
give information about domain interactions.

Some drawbacks of PP include its high computational cost,
its dependence on high information profiles, and homology
detection between distant organisms. For example,

ubiquitous unlinked proteins present in all genomes (profiles
with all ‘‘1’’s) will be counted by PP as correlated. The same is
true for proteins that are specific to a given genome (profiles
with all, but one, ‘‘0’’s). Shared phylogenetic relationships
between two proteins can also produce false correlations
between profiles. This issue has recently been addressed by
incorporating the phylogenetic trees in the analysis of
correlated gains and losses of pairs of proteins [23].
Rosetta Stone method. The Rosetta Stone approach infers

protein interactions from protein sequences in different
genomes [24–27]. It is based on the observation that some
interacting proteins/domains have homologs in other
genomes that are fused into one protein chain, a so-called
Rosetta Stone protein (Figure 1C). Gene fusion apparently
occurs to optimize co-expression of genes encoding for
interacting proteins. In Escherichia coli, the Rosetta Stone
method found 6,809 potentially interacting pairs of
nonhomologous proteins; both proteins from each pair had
significant sequence similarity to a single protein from some
other genome. Analysis of pairs found by this approach
revealed that for more than half of the pairs both members
were functionally related [24]. Comparison with the
experimental data on protein interactions from the DIP
database showed that about 6.4% of all experimental
interactions can be linked by Rosetta Stone proteins.
Sequence-based co-evolution methods. As was mentioned

earlier, interacting proteins very often co-evolve so that
changes in one protein leading to the loss of function or
interaction should be compensated by the correlated changes
in another protein. The orthologs of coevolving proteins also
tend to interact, thereby making it possible to infer unknown
interactions in other genomes [28]. It has been argued that
co-evolution can be reflected in terms of the similarity
between phylogenetic trees of two non-homologous
interacting protein families (Figure 1D). The similarity
between phylogenetic trees can be quantified by calculating
the correlation coefficient between distance matrices used to
construct the trees with large values indicating co-evolution
between two protein families [29,30] or domain families [31].
Correspondence between the elements of two matrices or
branches of two trees is required to calculate the correlation
coefficient, but such information is not always available. To
address this issue, several algorithms have been developed to
identify specific interaction partners between two interacting
families that are especially useful when families contain
paralogs with different binding specificities [32–34]. Given a
pair of protein families, their distance matrices are aligned to
minimize the difference between their elements, and
interactions are predicted as those corresponding to aligned
columns of two matrices. It was noticed earlier that most
methods cannot perform an alignment search successfully if
the size of families is large (more than 30 proteins in a family)
[32]. One way to reduce the search space is to use the
information encoded in phylogenetic trees [34].
The similarity between two phylogenetic trees is influenced

by the speciation process, and therefore there is a certain
‘‘background’’ similarity between trees of any proteins, no
matter if they interact or not. Different statistical techniques
have been developed to account for ‘‘phylogenetic
subtraction’’ [35]. Simplified versions of this approach were
introduced recently to account for the background similarity
in protein interaction prediction [36–38]. According to one

Table 1. Different Prediction Methods

Method Name Protein/Domain
Interaction

Physical Interaction/
Functional Association

Gene co-expression P F
Synthetic lethality P F
Gene cluster and gene neighbor P F
Phylogenetic profile P, D F
Rosetta Stone P F
Sequence co-evolution P, D F
Classification P, D P
Integrative P, D P
Domain association D P
Bayesian networks P, D F, P
Domain pair exclusion D P
p-Value D P

Second column shows if method is designed to predict protein (P) or domain (D)
interactions (note that predicted domains can also be used for verifying protein
interactions).
Third column shows if the method can be used to infer direct physical interaction (P) or
indirect functional association (F).
doi:10.1371/journal.pcbi.0030043.t001

PLoS Computational Biology | www.ploscompbiol.org April 2007 | Volume 3 | Issue 4 | e430596

Protein Interaction Prediction Methods

• Rosetta Stone
infers protein linkage from
genomic analyses

• Phylogenetic Profile
identifies genes that are 
correlated across genomes

• Conserved Gene Neighbour
identifies proximal genes across genomes

• Operon/Gene Cluster
can assign putative function to unknown genes 

Only half can infer physical associations
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Biophysics of the PPI complex



• Most detail comes from structural biology

• Obligatory and Non-obligatory Complexes

• Permanent or Transient Complexes 
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Biophysics of the PPI complex



What’s happening at the molecular level 
(temporally and spatially)?

Thoughts on the Biophysical Properties 
of Complexation of Transient PPIs?



• Small scale: on-rates 
affinity driven - long range attractions
eg electrostatics, solvation and ionic milieu

• Small scale: off-rates 
min destabilising but max stabilising 
intermolecular contact area

• Small scale: reordering and stabilising 
secondary & tertiary structure

Thoughts on the Biophysical Properties 
of Complexation of Transient PPIs?



Studies on the Biophysical Properties 
of Complexation of Transient PPIs?
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Defined as a continuum
not considering localisation



What’s happening at a larger scale of 
organisation?

Thoughts on the Biophysical Properties 
of Complexation of PPIs?



• Large scale: self-organisation around cellular 
architecture (cytoskeleton, organelles)

• Large scale: transcriptional changes during 
the cell cycle or under nutrient stress

Thoughts on the Biophysical Properties 
of Complexation of PPIs?
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Abstract
Background: Most cellular processes are carried out by multi-protein complexes, groups of
proteins that bind together to perform a specific task. Some proteins form stable complexes, while
other proteins form transient associations and are part of several complexes at different stages of
a cellular process. A better understanding of this higher-order organization of proteins into
overlapping complexes is an important step towards unveiling functional and evolutionary
mechanisms behind biological networks.

Results: We propose a new method for identifying and representing overlapping protein
complexes (or larger units called functional groups) within a protein interaction network. We
develop a graph-theoretical framework that enables automatic construction of such
representation. We illustrate the effectiveness of our method by applying it to TNFD/NF-NB and
pheromone signaling pathways.

Conclusion: The proposed representation helps in understanding the transitions between
functional groups and allows for tracking a protein's path through a cascade of functional groups.
Therefore, depending on the nature of the network, our representation is capable of elucidating
temporal relations between functional groups. Our results show that the proposed method opens
a new avenue for the analysis of protein interaction networks.

Background
A major challenge in systems biology is to understand the
intricate network of interacting molecules. The complex-
ity in biological systems arises not only from various indi-
vidual protein molecules but also from their organization
into systems with numerous interacting partners. In fact,
most cellular processes are carried out by multi-protein
complexes, groups of proteins that bind together to per-

form a specific task. Some proteins form stable complexes,
such as the ribosomal complex that consists of more than
50 proteins and three RNA molecules, while other pro-
teins form transient associations and are part of several
complexes at different stages of a cellular process. A better
understanding of this higher-order organization of pro-
teins into overlapping complexes is an important step
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nected to either D or C. The representation that maximizes
the number of leaves is shown in Figure 3(b). One can
clearly see the interplay between the activators and inhib-
itors. Proteins p105 and NF-NB participate in the same
functional groups and thus follow the same path in the
tree. The same is true for the pair of proteins IkBD and
IkBE. The Tree of Complexes captures this by grouping
p105 and NF-NB, and IkBD and IkBE.

Pheromone signaling pathway
The yeast Saccharomyces cerevisiae may be present in one of
two haploid cell types, which are able to mate. Pherom-
ones released by one type of cell bind to a specific receptor

of the other type. This triggers the activation of a scaffold
protein-bound mitogen-activated protein kinase (MAPK)
cascade and subsequent activation of nuclear proteins that
control subsequent cellular events. In a recent paper, Spi-
rin et al. [13] identified a subnetwork of proteins involved
in this process within a yeast protein interaction network
[21]. We analyzed this subnetwork using the COD to see
if our method can extract elements of temporal ordering.
The subnetwork identified by Spirin et al. and its Tree of
Complexes representation is given in Figure 4. In this case,
the protein network is not chordal. First, the COD method
identifies and connects a pair of weak siblings, MKKl and
MKK2 .Then, to transform the network to a chordal graph,

TNFD/NF-NB Signaling PathwayFigure 3
TNFD/NF-NB Signaling Pathway. The TNFD/NF-NB signaling pathway. (a) The network. (b) The Tree of Complexes repre-
sentation. The flow of action is visually represented by background colors: green for activators (IKKs) and yellow for inhibitors 
(INBs, and p100). The NIK kinase is in the first functional group (A), together with all three members of the IKK complex and 
p100. Functional group B includes, in addition to p100, the IKKs and two inhibitors INBD and INBE. This group is the beginning 
of interaction between IKKs and INBs. Functional group C loses some of the IKKs, continues to show INB and begins to show 
interaction between INBs and NF-NB factors. Finally, in group E we see the entrance of NIK-independent Col-Tpl2 kinase.
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three additional edges are added: (SPH1, SPA2), (FUS3,
KSS1), and (STE11, STE7). In this case, some functional
groups will contain more than one protein complex.

This network admits six different Tree of Complexes rep-
resentations: (i) functional group H can be connected to
either B or C; (ii) any interconnection pattern that spans
groups E, F, and G can be chosen. If we ask for a tree with
maximum number of leaves, the number of tree variants
is reduced to two (option (i)).

The MAPK cascade module consists of three sequentially
acting protein kinases: MAP kinase kinase kinase (STE11)
MAP kinase kinase (STE7) and MAP kinase (KSS1, FUS3)
[22]. MKKl and MKK2 are two redundant protein kinase
kinases (most similar to STE7) [23]. Their redundancy is
properly captured by the � (OR) in their functional group
(H). The MAP kinases KSS1 and FUS3 are two separate
kinases both activated by STE7 each of which is essential
for a different program: FUS3 – for mating; KSS1 – for the
filamentous growth [24]. Once again this is correctly cap-
tured by � (OR) in groups F and G. STE5 is a scaffold pro-
tein of the MAPK module. It recruits MAPK module
kinases (STE11, STE7, FUS3). This is consistent with the
central position of a functional group containing STE5 in

the tree and relative to the paths of STE7, STE11 and FUS3.
Finally, nuclear proteins DIG1 and DIG2 (necessary for
transcription inhibition, which are regulated by both
FUS3 and KSS1) enter at the endpoint (node F) in the tree.

Conclusion
Recent advances in experimental techniques resulted in
the accumulation of a vast amount of protein interaction
information, which is routinely represented by protein
interaction networks. Therefore it is not surprising that
increasingly more complex graph-theoretical tools are
deployed to analyze protein interaction graphs and extract
biologically meaningful patterns.

In general, graphs are not required to have any type of reg-
ularity. This makes them a very flexible tool which is able
to represent complex relationships. However, this often
also makes them computationally hard to deal with, for
many problems in graph theory are NP-complete. Fre-
quently graph theoretical problems can be simplified if
some restrictions are imposed on the graph. Various
restrictions give rise to various graph families. Given a
graph family, it is usually very useful to be able to repre-
sent it using some kind of a tree. Such tree representation

Pheromone Signaling PathwayFigure 4
Pheromone Signaling Pathway. The pheromone signaling pathway. (a) The network. (b) The Tree of Complexes represen-
tation. For the description of the elements of the tree see the text.
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ABSTRACT
Motivation: Revealing the subcellular localization of proteins
within membrane-bound compartments is of a major importance
for inferring protein function. Though current high-throughput
localization experiments provide valuable data, they are costly
and time-consuming, and due to technical difficulties not readily
applicable for many Eukaryotes. Physical characteristics of proteins,
such as sequence targeting signals and amino acid composition
are commonly used to predict subcellular localizations using
computational approaches. Recently it was shown that protein–
protein interaction (PPI) networks can be used to significantly
improve the prediction accuracy of protein subcellular localization.
However, as high-throughput PPI data depend on costly high-
throughput experiments and are currently available for only a few
organisms, the scope of such methods is yet limited.
Results: This study presents a novel constraint-based method
for predicting subcellular localization of enzymes based on their
embedding metabolic network, relying on a parsimony principle of
a minimal number of cross-membrane metabolite transporters. In
a cross-validation test of predicting known subcellular localization
of yeast enzymes, the method is shown to be markedly robust,
providing accurate localization predictions even when only 20%
of the known enzyme localizations are given as input. It is
shown to outperform pathway enrichment-based methods both
in terms of prediction accuracy and in its ability to predict the
subcellular localization of entire metabolic pathways when no a-priori
pathway-specific localization data is available (and hence enrichment
methods are bound to fail). With the number of available metabolic
networks already reaching more than 600 and growing fast, the new
method may significantly contribute to the identification of enzyme
localizations in many different organisms.
Contact: shira.mintz@weizmann.ac.il; tomersh@cs.technion.ac.il

1 INTRODUCTION
Eukaryotic cells contain several membrane-bound compartments
called organelles that perform specialized biological functions.
Subcellular compartmentalization allows the cell to maintain
different environments that bring enzymes and substrates into
physical proximity, participating in compartment-specific processes.
Revealing the subcellular localization of proteins is of a major
importance for inferring protein functions (Huh et al., 2003) and
for the discovery of drug targets (as some compartments are more
easily accessible than others for drug molecules). Systematic protein

∗To whom correspondence should be addressed.

localization experiments based on green fluorescent protein (GFP)
tagging have been performed for several microbial species (Kumar
et al., 2002; Matsuyama et al., 2006). Such large-scale experiments
are both costly and time-consuming, and due to technical difficulties
are commonly not applicable to higher Eukaryotes.

Current limitations of experimental procedures for identifying
protein subcellular localization have given rise to ongoing
development of computational methods for predicting localization
data (Bhasin and Raghava, 2004; Emanuelsson et al., 2000;
Nakai and Horton, 1999; Scott et al., 2004; Shatkay et al.,
2007). Such methods rely on lists of features that characterize a
protein, such as its amino acid composition, their physio-chemical
and structural properties, codon-bias, protein motifs and targeting
signals (short stretches of amino-acid residues predominantly
located at the N-terminus). The various localization methods apply
different supervised classification approaches (e.g. artificial neural
networks, nearest neighbor, SVM, etc.) to predict protein subcellular
localization based on training data of experimentally determined
protein localization. The performance of these methods significantly
varies between different organisms and compartments, requiring
specific calibration in each context. Recent studies have investigated
a complementary approach for predicting subcellular localization,
utilizing large-scale protein–protein interaction (PPI) networks (Lee
et al., 2008; Scott et al., 2005). These methods are based on the
assumption that two proteins should be localized within the same or
adjacent compartments in order to interact. The work of Lee et al.
has shown that in some cases, utilizing a PPI network may provide
accurate localization predictions even without relying on common
protein characteristics such as those described above.

This study presents the first method that predicts the subcellular
localization of enzymes based on a metabolic network. Relying on a
metabolic network rather than a PPI network is highly advantageous
as metabolic networks are readily available for hundreds of species
based on cross-species enzyme sequence homology (Kanehisa and
Goto, 2000), while large-scale PPI networks depend on costly high-
throughput experiments that are currently available for only a few
organisms. Metabolic enzymes are also less likely to yield PPI
interactions (Uetz et al., 2000); e.g. the probability of a PPI between
metabolic enzymes in yeast is less than half of the probability
of an interaction between other non metabolic proteins (based on
data extracted from the DIP database (Salwinski et al., 2004)).
Thus, PPI-based localization methods have far less data to bootstrap
upon the localization of metabolic enzymes. Yet, constraint-based
modeling of metabolic networks was previously shown to predict
strong functional associations between enzymes (Notebaart et al.,
2008; Rokhlenko et al., 2007), and to successfully predict various

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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metabolic phenotypes in microorganisms [see Price et al. (2004) for
a review] and recently in human (Duarte et al., 2007; Shlomi et al.,
2008).

Considering a metabolic network view of metabolic processes,
the potential activity of an enzyme in a certain compartment
depends on the activity of many other enzymes in the compartment
synthesizing and degrading its substrate metabolites and on the
activity of membrane transporters that move metabolites between
compartments. Indeed, metabolic processes tend to be clustered
within various compartments without extensive usage of cross-
membrane metabolite transporters. For example, 36% and 47%
of the metabolic pathways in yeast are confined within only one
or two compartments, respectively (based on pathway annotation
data in the model of (Duarte et al., 2004). This may be explained
by the fact that the cross-membrane exchange of many of the
metabolites depends on transporter proteins, imposing an energetic
cost (e.g. demanding an ATP or GTP molecule per each metabolite
translocation (Palmieri et al., 2000) or requiring the maintenance
of a membrane potential (Wada et al., 1987). Accordingly, our
method predicts the subcellular localization of enzymes relying on
a parsimony principle of a minimal number of cross-membrane
metabolite transports. The utility of the method is demonstrated via
a cross-validation test of predicting known subcellular localization
of yeast enzymes.

2 METHODS
We present a new constraint-based modeling (CBM) method for
systematically predicting subcellular localization of enzymes in a metabolic
network, based on a-priori localization data for a subset of the enzymes,
relying on a parsimony principle of minimal number of cross-membrane
metabolite exchange. A schematic representation of the method is presented
in Figure 1. The input data for this method is a metabolic network,
representing a set of enzyme-catalyzed reactions, and the known localization
of a subset of the enzymes (Fig. 1a). Enzymatic reactions whose subcellular
localization is given as input are referred to as localized reactions. We
refer to the remaining reactions as non-localized reactions. The first step
of our method involves the integration of the given metabolic network
and the known localization data to construct an initial compartmentalized
network (Fig. 1b). This network consists of several compartments, in which
localized reactions may be activated in the corresponding compartments, and
non-localized reactions are duplicated to be present in all compartments.
Next, we apply a Mixed Integer Linear Programming (MILP) method to
compute a localization score for each pair of non-localized reaction and
compartment, reflecting the likelihood of this reaction to be present in that
compartment (Fig. 1c). These scores are used to determine the localization
of each non-localized reaction, which is the output of the method (Fig. 1d).
Next, we provide a brief overview on constraint-based modeling, followed
by a detailed description of the various steps of our compartment prediction
method.

2.1 Constraint-based modeling of metabolic networks
A metabolic network consisting of n metabolites and m reactions can be
represented by a stoichiometric matrix, denoted S, in which the Si,j represents
the stoichiometric coefficient of metabolite i in reaction j (Price et al.,
2004). A steady-state flux distribution (i.e. an assignment of flux rates
to all reactions in the network), denoted v, should satisfy the following
mass-balance constraint:

S ·v=0

The exchange of metabolites with the environment is represented as a
set of exchange reactions, enabling for a pre-defined set of metabolites to

Fig. 1. A schematic representation of the enzyme subcellular localization
prediction method. (a) The input data is a metabolic network, representing
a set of enzyme-catalyzed reactions, and the known localization data
for a subset of enzymes. (b) Integrating the given network and
localization data yields an initial compartmentalized network, consisting
of several compartments. Localized reactions appear in the corresponding
compartments while the non-localized reactions are duplicated to all
compartments. (c) Mixed Integer Linear Programming (MILP) is applied
for each pair of non-localized reaction and compartment to calculate a
localization score, reflecting the likelihood of this reaction to be present in
that compartment. (d) Enzymes are predicted to be localized in compartments
achieving the highest localization scores.

be either taken-up or secreted from the growth media. Available metabolite
localization data can be incorporated within S, by considering each row as
an instance of a metabolite in a specific compartment, and each column
as a reaction that involves metabolites in specific compartments (Duarte
et al., 2004). In this case, additional transport reactions (incorporated as
additional columns in S) are used to represent metabolite translocation
across compartments. In addition to mass-balance, a-priori data on reaction
directionality can be used to enforce flux rates to have positive values for
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Fig. 2. An illustrative example of our method for enzyme subcellular
compartment prediction. The initial compartmentalized network consists of
three compartments, with instances of 11 metabolites and 8 reactions in each
compartment. Thin edges connecting different instances of a metabolite in
various compartments represent transport reactions that move metabolites
across membrane boundaries. Wide arrows represent localized reactions
whose known localization is given as input to the prediction method. Solid
arrows represent reactions that are predicted to have non-zero flux by
our method reflecting their predicted localization. Dashed arrows represent
reactions predicted to have zero flux.

to be localized in the cytoplasm, as its substrate M11 is produced by R8
solely in the cytoplasm, and hence activating R7 in a different compartment
would require an unnecessary transport of M11 out of the cytoplasm. An
example in which the method cannot uniquely predict the localization of a
certain reaction is in the case of reaction R3 that produces metabolite M4
from M3. Activation of the localized reaction R4 in compartment-B requires
that its substrate metabolite M4 would be present in this compartment.
Metabolite M3 is produced solely in compartment-A, and hence reaction
R3 can be activated in compartment-A (with M4 being transported via two
transporters to compartment-B), or M3 can be transported to the cytoplasm
or to compartment-B and R3 activated in the cytoplasm or compartment-B,
respectively. In all three cases, the activation of R4 in compartment-B would
have the same total cost of activating two transport reactions.

3 RESULTS

3.1 Validating the localization prediction via a
metabolic network of Saccharomyces cerevisiae

To evaluate the performance of our method, we applied it to predict
enzyme localization for metabolic enzymes in the yeast S.cerevisiae.
Both the metabolic network and subcellular localization data
for S.cerevisiae are available within the genome-scale, fully
compartmentalized metabolic network model of (Duarte et al.,
2004). This network model accounts for 750 genes, 1062 metabolites
and 1149 reactions, acting in seven compartments: cytosol,
mitochondrion, peroxisome, nucleus, endoplasmic reticulum, golgi
apparatus, and vacuole. The cytosol is the largest compartment,
consisting of 65% of the total metabolic reactions, followed by the
mitochondrion, consisting of 16% of the reactions.

Fig. 3. Accuracy (a) and coverage (b) of enzyme subcellular localization
predictions in a cross-validation test in the yeast S.cerevisiae. The average
and standard error of the accuracy and coverage measures were calculated
based on 10 applications of the prediction methods over randomly sampled
sets of localized enzymes of similar size that are used as input.

To evaluate our method, we first removed all existing localization
data from the network model of Duarte et al., forming a new
stochiometric matrix with a single merged compartment that can
be given as input to our prediction method. Then, we applied a
cross-validation test, in which we randomly partitioned the enzymes
to localized and non-localized sets and applied our method to
predict the localization of the non-localized enzymes, given the
localized enzymes and the metabolic network. For the non-localized
enzymes, we assumed that prior knowledge (obtained for example,
via sequence-based prediction methods such as those described
above) narrows down the list of potential localizations of enzymes
to one out of four compartments, and hence restricts the activity
of non-localized reactions in the model to three randomly chosen
compartments in addition to the correct compartment. The specific
choice of restricting non-localized reactions to four compartments
was made based on a comprehensive analysis of ten prediction
methods applied to Arabidopsis thaliana, which showed that over
90% of its enzymes are predicted to be localized to no more than four
compartments (Heazlewood et al., 2007). To further evaluate the
performance of our method, we compare it with an enrichment-based
method that predicts subcellular localization based on an assumption
that pathways are coherently localized in various compartments.
Specifically, for each non-localized reaction participating in a
certain pathway we compute a hyper-geometric p-value reflecting
the pathway’s enrichment with enzymes localized within each
compartment. The localization of the reaction is predicted based
on the compartment that yields the lowest p-value. The metabolic
pathway data was also obtained from the metabolic network model
of Duarte et al.

The accuracy and coverage of our method in comparison with
the enrichment-based method, for various fractions of localized
enzymes input sets, are shown in Figure 3. Since the known
distribution of enzyme compartment localization is significantly
skewed towards the cytoplasm, we present the accuracy and
coverage statistics separately for cytosolic reactions and non-
cytosolic reactions (showing that our method correctly predicts
localization in both cases). The accuracy of our method is markedly
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robust, remaining above 78% for both cytosolic and non-cytosolic
reactions when the percentage of given localized reactions is as low
as 20%. The coverage shows a moderate decline from 88% and
79% for cytosolic and non-cytosolic reactions, respectively, given
the 80% localized reactions as input, towards 78% and 63% in the
case of 20% localized reactions. This decline in coverage is quite
expected, as when the set of localized reactions used as input is
small, many reactions have the same likelihood of being active
in various compartments. The pathway enrichment-based method
constantly achieves a markedly lower accuracy (except for the case
in which only 20% localized reactions are used as input in which
its coverage is minute), especially for the prediction of cytosolic
enzymes. The coverage of this method shows a slight advantage over
our network-based approach for high fractions of localized reactions
used as input. However, the pathway enrichment-based method is
shown to be highly non-robust when the fraction of given localized
reactions decreases—when it reaches 20% its coverage significantly
drops to below 10%. The failure of the pathway enrichment-based
method to match our network-based approach is somewhat expected,
considering that many metabolic pathways do cross compartmental
boundaries (as discussed above) and as it does not account for
pathways intersection as shown below.

3.2 An example of predicting the subcellular
localization of complete pathways

We further tested our method in predicting subcellular localization
for a set of enzymes with unknown localization that covers two
complete pathways. In such cases, a-priori localization data is not
available for any enzyme in a certain pathway, and hence pathway
enrichment-based methods are bound to fail, requiring a network-
based view of pathways connectivity. Specifically, we aim to predict
the localization of a group of enzymes composing the TCA cycle
and the glyoxylate cycle, given the known localization all of the
remaining enzymes in the network (Fig. 4). The set of enzymes to
predict consist of 12 reactions: three ethanol fermentation reactions
(with isozymes localized to both cytoplasm and mitochondria),
four TCA cycle reactions (only in mitochondria; referred to as
mitochondria-specific TCA cycle reactions), two glyoxylate cycle
reactions [one in both peroxisome and cytosol and another only
in cytosol) and three reactions involving both gloxylate and TCA
(with isozymes localized in all three compartments; (Regev-Rudzki
et al., 2005)]. The three reactions involved in the ethanol oxidation
pathway are correctly predicted to be localized both in the cytosol
and mitochondria. The four mitochondria-specific TCA cycle
reactions are correctly predicted to be localized in mitochondria
and the three reactions involving both gloxylate and TCA pathways
are correctly predicted to be localized in all three compartments.
The glyoxylate reaction localized to both peroxisome and cytosol is
correctly predicted to be localized in the cytosol, though its second
most likely localization is falsely predicted to be mitochondria, while
only its third predicted localization is peroxisome. A similar problem
arises with the localization prediction of the glyoxylate reaction that
is known to be localized only in the cytosol, where the method
predicts a most likely mitochondrial localization. The two false
predictions for these reactions result from the utilization of their
substrate metabolites also in mitochondria. However, in both cases,
the next most likely localization prediction given by our method is
the correct one.

Fig. 4. Enzyme subcellular localization prediction of two complete
metabolic pathways, including the TCA cycle (black rectangles) and
glyoxylate cycle (grey rectangles), and a subset of the ethanol oxidation
pathway (white rectangles), given localization data for enzymes in other
connected pathways (white ellipses) as input. Transport reactions are marked
by dotted arrows.

3.3 Validating emergent subcellular localization
predictions via GO annotation

Following the cross-validation test, we turned to predict novel
subcellular localizations of enzymes in the metabolic network.
Towards this goal, we re-ran our method on the same network in
a leave-one-out cross validation setup, in which localization data
for all reactions but one was used to predict the localization of
that single reaction. We found that our method predicts a non-
cytosolic localization for 22 reactions in the model although they
are localized in the model to the cytosol. Inspecting the GO
cellular localization annotation for these reactions revealed that
the localization of 10 out of the 22 was correctly predicted. This
prediction accuracy is statistically significant (p < 0.05) compared
with a random assignment of genes to compartments (with
an assignment probability for each compartment relative to its
size in GO).

An example of such emergent localization predictions that
are not accounted for in the model is the case of enzymes
SUR2 (dihydrosphingosine C-4 hydroxylase), and TSC10
(3-ketosphinganine reductase), which catalyze consecutive
reactions in the ceramide biosynthesis pathway. Ceramides are
formed as the key intermediates in the biosynthesis of sphingolipids,
essential components of the plasma membrane. This pathway is
known to be accomplished by ER enzymes, some of which can
also be localized to the cytosol (Natter et al., 2005). SUR2 is
known to be localized exclusively to the ER, although mistakenly
it is localized strictly to the cytosol in the model. TSC10 is
experimentally localized to both the ER and the cytosol, though
again, mistakenly it is localized in the model only to the cytosol.
Our method predicts the correct localization of both enzymes in
the ER.

4 DISCUSSION
This study presents a novel constraint-based modeling method
for predicting subcellular localization of enzymes embedded in a
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Fig. 2. An illustrative example of our method for enzyme subcellular
compartment prediction. The initial compartmentalized network consists of
three compartments, with instances of 11 metabolites and 8 reactions in each
compartment. Thin edges connecting different instances of a metabolite in
various compartments represent transport reactions that move metabolites
across membrane boundaries. Wide arrows represent localized reactions
whose known localization is given as input to the prediction method. Solid
arrows represent reactions that are predicted to have non-zero flux by
our method reflecting their predicted localization. Dashed arrows represent
reactions predicted to have zero flux.

to be localized in the cytoplasm, as its substrate M11 is produced by R8
solely in the cytoplasm, and hence activating R7 in a different compartment
would require an unnecessary transport of M11 out of the cytoplasm. An
example in which the method cannot uniquely predict the localization of a
certain reaction is in the case of reaction R3 that produces metabolite M4
from M3. Activation of the localized reaction R4 in compartment-B requires
that its substrate metabolite M4 would be present in this compartment.
Metabolite M3 is produced solely in compartment-A, and hence reaction
R3 can be activated in compartment-A (with M4 being transported via two
transporters to compartment-B), or M3 can be transported to the cytoplasm
or to compartment-B and R3 activated in the cytoplasm or compartment-B,
respectively. In all three cases, the activation of R4 in compartment-B would
have the same total cost of activating two transport reactions.

3 RESULTS

3.1 Validating the localization prediction via a
metabolic network of Saccharomyces cerevisiae

To evaluate the performance of our method, we applied it to predict
enzyme localization for metabolic enzymes in the yeast S.cerevisiae.
Both the metabolic network and subcellular localization data
for S.cerevisiae are available within the genome-scale, fully
compartmentalized metabolic network model of (Duarte et al.,
2004). This network model accounts for 750 genes, 1062 metabolites
and 1149 reactions, acting in seven compartments: cytosol,
mitochondrion, peroxisome, nucleus, endoplasmic reticulum, golgi
apparatus, and vacuole. The cytosol is the largest compartment,
consisting of 65% of the total metabolic reactions, followed by the
mitochondrion, consisting of 16% of the reactions.

Fig. 3. Accuracy (a) and coverage (b) of enzyme subcellular localization
predictions in a cross-validation test in the yeast S.cerevisiae. The average
and standard error of the accuracy and coverage measures were calculated
based on 10 applications of the prediction methods over randomly sampled
sets of localized enzymes of similar size that are used as input.

To evaluate our method, we first removed all existing localization
data from the network model of Duarte et al., forming a new
stochiometric matrix with a single merged compartment that can
be given as input to our prediction method. Then, we applied a
cross-validation test, in which we randomly partitioned the enzymes
to localized and non-localized sets and applied our method to
predict the localization of the non-localized enzymes, given the
localized enzymes and the metabolic network. For the non-localized
enzymes, we assumed that prior knowledge (obtained for example,
via sequence-based prediction methods such as those described
above) narrows down the list of potential localizations of enzymes
to one out of four compartments, and hence restricts the activity
of non-localized reactions in the model to three randomly chosen
compartments in addition to the correct compartment. The specific
choice of restricting non-localized reactions to four compartments
was made based on a comprehensive analysis of ten prediction
methods applied to Arabidopsis thaliana, which showed that over
90% of its enzymes are predicted to be localized to no more than four
compartments (Heazlewood et al., 2007). To further evaluate the
performance of our method, we compare it with an enrichment-based
method that predicts subcellular localization based on an assumption
that pathways are coherently localized in various compartments.
Specifically, for each non-localized reaction participating in a
certain pathway we compute a hyper-geometric p-value reflecting
the pathway’s enrichment with enzymes localized within each
compartment. The localization of the reaction is predicted based
on the compartment that yields the lowest p-value. The metabolic
pathway data was also obtained from the metabolic network model
of Duarte et al.

The accuracy and coverage of our method in comparison with
the enrichment-based method, for various fractions of localized
enzymes input sets, are shown in Figure 3. Since the known
distribution of enzyme compartment localization is significantly
skewed towards the cytoplasm, we present the accuracy and
coverage statistics separately for cytosolic reactions and non-
cytosolic reactions (showing that our method correctly predicts
localization in both cases). The accuracy of our method is markedly
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metabolic phenotypes in microorganisms [see Price et al. (2004) for
a review] and recently in human (Duarte et al., 2007; Shlomi et al.,
2008).

Considering a metabolic network view of metabolic processes,
the potential activity of an enzyme in a certain compartment
depends on the activity of many other enzymes in the compartment
synthesizing and degrading its substrate metabolites and on the
activity of membrane transporters that move metabolites between
compartments. Indeed, metabolic processes tend to be clustered
within various compartments without extensive usage of cross-
membrane metabolite transporters. For example, 36% and 47%
of the metabolic pathways in yeast are confined within only one
or two compartments, respectively (based on pathway annotation
data in the model of (Duarte et al., 2004). This may be explained
by the fact that the cross-membrane exchange of many of the
metabolites depends on transporter proteins, imposing an energetic
cost (e.g. demanding an ATP or GTP molecule per each metabolite
translocation (Palmieri et al., 2000) or requiring the maintenance
of a membrane potential (Wada et al., 1987). Accordingly, our
method predicts the subcellular localization of enzymes relying on
a parsimony principle of a minimal number of cross-membrane
metabolite transports. The utility of the method is demonstrated via
a cross-validation test of predicting known subcellular localization
of yeast enzymes.

2 METHODS
We present a new constraint-based modeling (CBM) method for
systematically predicting subcellular localization of enzymes in a metabolic
network, based on a-priori localization data for a subset of the enzymes,
relying on a parsimony principle of minimal number of cross-membrane
metabolite exchange. A schematic representation of the method is presented
in Figure 1. The input data for this method is a metabolic network,
representing a set of enzyme-catalyzed reactions, and the known localization
of a subset of the enzymes (Fig. 1a). Enzymatic reactions whose subcellular
localization is given as input are referred to as localized reactions. We
refer to the remaining reactions as non-localized reactions. The first step
of our method involves the integration of the given metabolic network
and the known localization data to construct an initial compartmentalized
network (Fig. 1b). This network consists of several compartments, in which
localized reactions may be activated in the corresponding compartments, and
non-localized reactions are duplicated to be present in all compartments.
Next, we apply a Mixed Integer Linear Programming (MILP) method to
compute a localization score for each pair of non-localized reaction and
compartment, reflecting the likelihood of this reaction to be present in that
compartment (Fig. 1c). These scores are used to determine the localization
of each non-localized reaction, which is the output of the method (Fig. 1d).
Next, we provide a brief overview on constraint-based modeling, followed
by a detailed description of the various steps of our compartment prediction
method.

2.1 Constraint-based modeling of metabolic networks
A metabolic network consisting of n metabolites and m reactions can be
represented by a stoichiometric matrix, denoted S, in which the Si,j represents
the stoichiometric coefficient of metabolite i in reaction j (Price et al.,
2004). A steady-state flux distribution (i.e. an assignment of flux rates
to all reactions in the network), denoted v, should satisfy the following
mass-balance constraint:

S ·v=0

The exchange of metabolites with the environment is represented as a
set of exchange reactions, enabling for a pre-defined set of metabolites to

Fig. 1. A schematic representation of the enzyme subcellular localization
prediction method. (a) The input data is a metabolic network, representing
a set of enzyme-catalyzed reactions, and the known localization data
for a subset of enzymes. (b) Integrating the given network and
localization data yields an initial compartmentalized network, consisting
of several compartments. Localized reactions appear in the corresponding
compartments while the non-localized reactions are duplicated to all
compartments. (c) Mixed Integer Linear Programming (MILP) is applied
for each pair of non-localized reaction and compartment to calculate a
localization score, reflecting the likelihood of this reaction to be present in
that compartment. (d) Enzymes are predicted to be localized in compartments
achieving the highest localization scores.

be either taken-up or secreted from the growth media. Available metabolite
localization data can be incorporated within S, by considering each row as
an instance of a metabolite in a specific compartment, and each column
as a reaction that involves metabolites in specific compartments (Duarte
et al., 2004). In this case, additional transport reactions (incorporated as
additional columns in S) are used to represent metabolite translocation
across compartments. In addition to mass-balance, a-priori data on reaction
directionality can be used to enforce flux rates to have positive values for
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SMALL RNA REGULATION

In the text we discussed active degradation or irreversible in-
activation of a protein (see Active Degradation and Irreversible
Inactivation). We mentioned also that inactivation of mRNA by
a sRNA could be modeled similarly. However, there is an addi-
tional interesting feature of regulation by sRNA, namely, that it
is often associated with degradation of both the sRNA (s) and
its target mRNA (m). This can be modeled by the equations
dm/dt = 1−γms −m/τ and ds /dt = α−γms −s , where α quan-
tifies the regulatory input and γ the mutual interaction strength
(35, 36, 42, 43). High γ or α allows a high (regulated) degradation
rate of m, a rate that increases with γα. The speed of response, af-
ter a change in α, increases with the value of γ. Furthermore, one
expects switch-like behavior of steady-state values of m, as a func-
tion of α, provided that γ is high (36). For RyhB-SodB in E. coli,
one finds (α; γ) ≈ (4; 400), reflecting a large mutual interaction.
In contrast, for the Spot42-galK system (α; γ) ≈ (18; 2), where a
large α indicates a large potential for overproducing sRNA rel-
ative to its target (43). Notice that the above equations apply to
any mechanisms where two molecules mutually inactivate each
other by forming an irreversible complex.

an mRNA. Thus, the same sort of model could
be used to model inactivation of a target mRNA
(C) by a small- or mRNA (R), for instance, by
antisense pairing and subsequent degradation
(35, 36, 40, 42, 43) (see sidebar, Small RNA
Regulation). Active degradation of proteins or
mRNA is a major part of many metabolic and
stress response systems.

DYNAMICS OF SINGLE
FEEDBACK LOOPS
FLs are formed when links like those in
Figure 2 are combined into a closed cyclic
chain; thereby, the influence of each regulator
in this cycle eventually loops back to reach itself.
Depending on the types of links in the cycle,
this effective self-interaction can be positive or
negative, and this strongly determines the be-
havior of the FL. RNs typically have multiple
FLs of various signs. However, we begin by de-
scribing, in this section, the behavior of single,
isolated negative and positive FLs.

Negative Feedback: Homeostasis
and Oscillations
In the RN shown in Figure 1b, an increase in
intracellular iron increases the amount of ac-
tive Fur, a TF that represses production of iron
transporters. Thus, an increase in active Fur re-
duces the intake of iron, thereby closing the cy-
cle and forming a FL. Following the links, one
sees that the overall logic of the loop is to coun-
teract any perturbation in the intracellular iron
level. This is what we mean by negative feed-
back. Figure 1c contains another example: p53
activates the production of Mdm2, which binds
to p53 and inactivates it. In general, a FL is neg-
ative if it has an odd number of repression links.
The logic of negative feedback makes it ideal
for stabilizing systems and minimizing fluctua-
tions (12). Thus, negative feedback is associated
mostly with maintenance of homeostasis. The
most common form is where a small molecule
binds to and inhibits an enzyme that catalyzes
one of the earlier steps in its metabolic path-
way. A similar effect is produced in riboswitches
where the metabolite binds to and inactivates
the mRNA of the necessary enzyme (39). These
negative FLs use only posttranscriptional
regulation.

Negative FLs can also involve transcrip-
tional regulation. In particular, many TFs re-
press the transcription of their own gene,
thereby buffering their regulation of other
genes against global variations in protein-DNA
binding, for example, due to modulations in
intercellular salt concentrations (60). Negative
autoregulation of a TF can be readily mod-
eled using a straightforward modification of
Equation 7 (50):

d R
dt

= leak + capacity
1 + (R/K )h − R

τ
. 8.

The product τ · capacity is a characteristic con-
centration that is important: R cannot exceed
this value and, therefore, if τ · capacity < K,
negative feedback is effectively always inactive.
Conversely, τ · capacity should be larger than
K for the feedback to be active and relevant.
In steady state, Equation 8 results in R grow-
ing slower than linearly as capacity is increased.
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That is, the steady-state level of R is affected
relatively little by changes in cellular factors
that affect capacity, which is what makes a neg-
ative FL good for homeostasis. In addition, the
steady state is reached faster than in the absence
of feedback (47, 54), which is also useful for
homeostasis.

When negative feedback is delayed, in time
it can give rise to oscillations (Figure 3b). We
can add an explicit time delay to Equation 8,
giving

d R
dt

= leak + capacity
1 + (R(t − τd )/K )h − R

τ
. 9.

In the parameter regime where negative feed-
back is active, the system favors homeostasis and
shows no oscillations when the time delay, τ d ,
is small (typically, of the order of the regula-
tor lifetime, τ , or less), and shows oscillations
when the delay is larger than a critical amount.
Such time-delayed differential equations have
been used to model oscillations in the develop-
mental regulator Hes1, which inhibits its own
transcription (26, 27), as well as more complex
negative FLs in p53 response (55, 56) and ze-
brafish somitogenesis (34). Time delay can arise
in many ways. Transcription, and translation
in particular, can be relatively slow in eukary-
otes. For example, Hirata et al. (26) suggest
that delays caused by transcription and trans-
lation in production of Hes1 are of the order of
25 min.

Other mechanisms can also cause an effec-
tive time delay, for instance, when a protein
binds to a TF catalyzing its degradation. Such
saturated degradation (13, 29, 56) has been sug-
gested as the source of delay underlying oscil-
lations observed in negative feedback systems
of p53, NF-κB, and Wnt. In such a case, it
may be more appropriate to model the com-
plex formation explicitly instead of hiding it
within a parameter like τ d in Equation 9. Over-
all, when there are oscillations, the period is
set by the slowest rate in the system, which
is usually the decay time of a protein. There-
fore, the pattern of oscillation can be changed
by genetic engineering of system components
(32).
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Figure 3
Schematic illustration of negative and positive feedback loops along with their
respective dynamical behavior. (a) Negative feedback stabilizes the output to a
near-constant level and allows for fast transient increase in production in
response to stress or perturbations. (b) If negative feedback is delayed, the
protein concentrations may oscillate in time. (c) Positive feedback can result in
bistability, i.e., the system can exist stably in either of two distinct steady states.
A second transcription factor that modulates the shift from one state to another
typically exhibits an ultrasensitive response (18, 52).

Saturated
degradation: when
degradation of a
protein is catalyzed by
limiting cellular
factors, the rate
saturates at a value
independent of the
protein concentration

Negative Feedback in Stress Response
Cells often need to respond to environmental
stresses, which may be biotic (e.g., viral infec-
tion) or abiotic (e.g., osmotic stress, heat shock,
DNA damage, presence of toxic substances, and
mechanical damage). In any of these situations,
the cell has a repertoire of appropriate proteins
that can mitigate the stress. Accordingly, when
stress is experienced, the cell communicates the
need for stress response proteins to the tran-
scription/translation factors that can activate
production of the required proteins—this is a
situation suitable for negative feedback regula-
tion. However, stress response usually needs to
be initiated as quickly as possible to minimize
the damage caused by the stress. Therefore, one
usually finds that negative FLs in stress response
systems involve protein-protein interactions in
which a TF regulates the production of a
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That is, the steady-state level of R is affected
relatively little by changes in cellular factors
that affect capacity, which is what makes a neg-
ative FL good for homeostasis. In addition, the
steady state is reached faster than in the absence
of feedback (47, 54), which is also useful for
homeostasis.

When negative feedback is delayed, in time
it can give rise to oscillations (Figure 3b). We
can add an explicit time delay to Equation 8,
giving

d R
dt

= leak + capacity
1 + (R(t − τd )/K )h − R

τ
. 9.

In the parameter regime where negative feed-
back is active, the system favors homeostasis and
shows no oscillations when the time delay, τ d ,
is small (typically, of the order of the regula-
tor lifetime, τ , or less), and shows oscillations
when the delay is larger than a critical amount.
Such time-delayed differential equations have
been used to model oscillations in the develop-
mental regulator Hes1, which inhibits its own
transcription (26, 27), as well as more complex
negative FLs in p53 response (55, 56) and ze-
brafish somitogenesis (34). Time delay can arise
in many ways. Transcription, and translation
in particular, can be relatively slow in eukary-
otes. For example, Hirata et al. (26) suggest
that delays caused by transcription and trans-
lation in production of Hes1 are of the order of
25 min.

Other mechanisms can also cause an effec-
tive time delay, for instance, when a protein
binds to a TF catalyzing its degradation. Such
saturated degradation (13, 29, 56) has been sug-
gested as the source of delay underlying oscil-
lations observed in negative feedback systems
of p53, NF-κB, and Wnt. In such a case, it
may be more appropriate to model the com-
plex formation explicitly instead of hiding it
within a parameter like τ d in Equation 9. Over-
all, when there are oscillations, the period is
set by the slowest rate in the system, which
is usually the decay time of a protein. There-
fore, the pattern of oscillation can be changed
by genetic engineering of system components
(32).
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Figure 3
Schematic illustration of negative and positive feedback loops along with their
respective dynamical behavior. (a) Negative feedback stabilizes the output to a
near-constant level and allows for fast transient increase in production in
response to stress or perturbations. (b) If negative feedback is delayed, the
protein concentrations may oscillate in time. (c) Positive feedback can result in
bistability, i.e., the system can exist stably in either of two distinct steady states.
A second transcription factor that modulates the shift from one state to another
typically exhibits an ultrasensitive response (18, 52).
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scription/translation factors that can activate
production of the required proteins—this is a
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tion. However, stress response usually needs to
be initiated as quickly as possible to minimize
the damage caused by the stress. Therefore, one
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see this already with more than two entangled
FLs. Consider sugar-uptake systems, which at
the core are consumer motifs but also have an
overarching negative FL that can increase E
and T production during carbon starvation (see
Figure 7b). In contrast to the iron three-loop
motif of Figure 7a, this motif uses a second
TF to sense the level of another small molecule
(cAMP, a measure of carbon starvation). Both
TFs regulate the same set of genes; therefore,
the logic of signal integration at the production
of E and T (51) is also a major determinant
of network behavior (as opposed to the iron

three-loop motif for which the main determi-
nant remains the signs of the FLs). The logic
of signal integration is determined by molecu-
lar details of network components and inter-
actions, e.g., the structure of promoters and
regulatory regions, the mechanism of transcrip-
tion regulation, and the interplay between TFs
(31). The challenge for the bottom-up approach
is to nevertheless extract principles governing
the behavior of multiple entangled FLs. Un-
derstanding such principles would emphasize
core parameters to be measured to predict the
function and dynamics of larger RNs.

SUMMARY POINTS

1. Feedback is an essential part of molecular networks. It allows the cell to adjust the
repertoire of functional proteins to current needs.

2. A FL is primarily characterized by its sign: negative feedback for maintaining homeostasis,
positive feedback for obtaining ultrasensitivity or multiple stable states of the cellular
composition.

3. Negative feedback can cause oscillations if signal propagation around the FL is sufficiently
slow. High Hill coefficients, additional positive FLs, or saturated degradation facilitates
oscillations in a negative FL.

4. Positive feedback can come from strong self-activation of a gene, from mutual repression
between proteins, or by autocatalytic processes. In all cases one can obtain bistability if
reactions involve some sort of cooperativity.

5. Metabolism of small molecules is characterized by a separation of scales. Typically, the
intracellular pool of available small molecules is much smaller than the total amount of
small molecules consumed during one cell generation.

6. Combinations of FLs in small-molecule uptake and metabolism can result in new behav-
ioral features that are significantly different from a simple sum of the behaviors of single
loops.

FUTURE ISSUES

1. How often are simplifying assumptions (e.g., quasi-equilibrium of TF-operator binding)
good approximations, in practice, in living cells?

2. How should one characterize RNs with multiple entangled FLs?

3. To what extent is positive feedback used to focus signals in RNs and thereby facilitate
modularity of the network?

4. How important is the role of physical space in modulating the behavior of a RN?

56 Sneppen · Krishna · Semsey
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small molecules consumed during one cell generation.
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Auto regulatory
single protein

Auto regulatory PPIs

Feedback

Feedforward



• Small scale: as network motifs (directed, 
weighted, associated with ∆G of binding)

• Larger scale: Location of PPI classes - 
transient and permanent, obligate & non-
obligate

• Larger scale: Classes of PPIs associated with 
“Hubs” and “Loners” and essentiality.  

Descriptions for  
functional units of PPIs



Defining PPIs essential to metabolism

• PPIs associated network motifs as 
“hubs” in modules would be critical 
features in the metabolic network 

• PPIs associated network motifs 
as inter-module links would also be 
critical to a metabolic network



Close large scale models of 
metabolic pathways  

work [36], the model displays a transition in the distribution
patterns of excitations from a global (spike) to a more local (burst)
regime with an increasing rate of spontaneous excitations f. While

a spike (low-f regime) is able to reach most of the system
(depending on the excess of nodes in the excitable state S), the
burst (higher-f regime) is characterized by one or more excitation
spots which propagate through the system on a localized level due
to a more balanced distribution of the states S and R (Video S1 in
Text S1 illustrates the propagation of excitations on a modular
graph architecture during the burst regime). Consequently, the
DDC vectors separate rather precisely at the position where the
burst dynamics outbalances the spike dynamics. In this sense the
burst dynamics provides a suitable tool for the dynamic retrieval of
topological modules.

Analysis of the Hub Dominance
The results for f,1023 suggest that another form of dynamic

integration of nodes takes place beyond the module level. Groups
of nodes which belong to different topological modules (see e.g. the
blue and red labels in Figure 5) are placed in close dynamic
proximity (that is, they are integrated into the same dynamic
cluster). For testing this new principle of dynamic integration we
repeat this simulation with a non-modular scale-free BA graph (see
Methods) and the CN reference discussed in Figure 3. In Figure 6
the BA graph representation has been color-coded according to
the dynamically detected clusters (with a preset value of 7 clusters,
which determines the threshold applied to the corresponding
clustering tree) at f = 1025. One observes a rather clear ring-like
arrangement of colors around a central node which is one of the
hubs in the graph. This distribution of the dynamic clusters around
a central node h (displayed in black) confirms our hypothesis that
another topological feature is shaping the distribution of
excitations in this low-f regime.

Studying the agreement between the CN reference and the
DDC vectors for the BA graph over a whole range in f leads to the

Figure 3. Construction of a color-coded topological reference which is based on the location of the CN in the network (top row),
and computation of the dynamic clustering tree is carried out as described in Figure 2 (bottom row). (Top row) The central node h
(inner circle in the graph representation) displays the highest betweenness centrality B (see Methods: betweenness). It is surrounded by modules of
equidistant nodes (from h). The nodes of the resulting distance vector are re-sorted according to their distance to h.
doi:10.1371/journal.pcbi.1000190.g003

Figure 4. Graph representation of the modular scale-free
network. The nodes are colored according to the dynamic clustering
tree (resulting from a simulation with f = 0.01) after assigning a
threshold for 5 modules (the number of topological modules). The
dynamic clustering agrees with the topological modules almost
completely.
doi:10.1371/journal.pcbi.1000190.g004

Organization of Dynamics in Hierarchical Networks
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Graph of a modular scale-
free structure

Figure 1. Basic graph models representing different combinations of both modular and hub characteristics. The degree of a node (as
an example of a hub characteristic) is indicated by its size, while the grouping of the nodes reveals the modular structure. (A) The Erdös-Rényi (ER)
random graph lacks both hubs and modules; (B) the scale-free Barabási-Albert (BA) graph displays a center of interlinked hubs only; the (C) random
modular graph and the (D) scale-free modular graph consist of planarly linked modules, which are composed of smaller ER graph and BA graphs,
respectively. The hubs in the BA graph version are distributed among the modules. The hierarchical graphs in (E) and (F) are featured by modules
consisting of modules. In contrast to the hierarchical cluster graph in (E), the hierarchical scale-free graph (F) is additionally characterized by a
hierarchical structure of hubs with one hub dominating the center.
doi:10.1371/journal.pcbi.1000190.g001
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Graph of distributed “hubs” 
in modules





Example References



Summary

• Structural and experimental data reveals 
a wealth of PPIs 

• Biophysical information defines the 
nature and class of PPIs

• PPIs are poorly represented in network 
descriptions

• Incorporating PPI biophysics could better 
describe the distribution of functional 
units in Metabolic networks.


