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Abstract
Many complex diseases such as cancer are associated with changes in biological pathways and molecular networks
rather than being caused by single gene alterations. A major challenge in the diagnosis and treatment of such dis-
eases is to identify characteristic aberrancies in the biological pathways and molecular network activities and eluci-
date their relationship to the disease. This review presents recent progress in using high-throughput biological
assays to decipher aberrant pathways and network activities. In particular, this review provides specific examples
in which high-throughput data have been applied to identify relationships between diseases and aberrant pathways
and network activities. The achievements in this field have been remarkable, but many challenges have yet to be
addressed.
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INTRODUCTION
Historically, researchers have been able to demon-

strate the relationship between diseases and changes

in a single or a few genes using various experimental

systems. However, increasing evidence indicates that

complex diseases result from multiple genetic aber-

rancies in biological pathways and networks rather

than from single gene changes [1–3]. Biological

pathways represent series of actions among molecules

that lead to a certain product or a specific change in a

cell [4]. These pathways may be involved in metab-

olism, regulation of genes, signal transmissions and

other areas of cellular activities. Extensively studied

pathways include signaling, gene regulatory and

metabolic pathways. The differences between these

three pathways reside in their functioning cellular

location, compartments and molecular level. As a

result, the functional annotation information and

databases attributed to each pathway as well as the

analytic methods also differ. Pathways do not func-

tion alone. Instead, they occur in extremely complex

biological networks [5, 6], which are collections of

pathways and interactions between biological enti-

ties. Typical biological networks include cell signal-

ing networks, protein–protein interactions and

metabolic networks [7]. Increasing evidence indi-

cates that dysregulation of biological pathways and

network activities is a hallmark of complex diseases,

such as cancer [8, 9]. Therefore, identifying aberran-

cies involving many genes in specific biological net-

works may lead to the effective diagnosis and

treatment of various diseases.
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The key question is how to identify aberrancies in

biological pathways and networks. Because tens or

hundreds of genes are often involved, conventional

experimental systems developed for identifying

aberrant gene(s) are inadequate for deciphering aber-

rancies in pathways and network activities. Since

high-throughput technologies were first successfully

used in DNA sequencing [10], they have quickly

gained popularity in the fields of messenger RNA

(mRNA) expression profiling, DNA methylation

analysis, gene mutation screening, SNP detection,

copy number variation (CNV) analysis, microRNA

(miRNA) and non-coding RNA (ncRNA) profiling

[11]. Herein, we focus on reviewing research con-

tributions from the most recent publications in

which high-throughput data (HTD) and analytic

methods have been applied to identify relationships

between disease and aberrancies in pathways and

network activities. In the following sections, we

first provide a brief overview of HTD and analytic

methods, followed by a review of computational

approaches useful for identifying aberrant pathways

and networks by integrating multiple types of HTD.

Then, we present applications of these approaches to

the identification of functional modules and the dis-

covery of biomarkers. Finally, we provide conclud-

ing remarks, future perspectives, and guidance to

potential users of HTD about identifying aberrant

pathways and network activities.

HTD
The emergence of gene expression microarrays in

the mid-1990s dramatically changed traditional mo-

lecular biological and biochemical approaches, which

usually only studied one or a few genes in a tightly

controlled experimental system. Various omics

studies use HTD generated from technologies that

enable the simultaneous detection of a large number

of alterations in molecular components to investigate

the correlations and dependencies between molecu-

lar components. Omics studies not only facilitate the

understanding of biological entities at a molecular

level but also offer a different perspective on the

processes underlying disease initiation and progres-

sion. These studies also focus on ways of predicting,

preventing or treating disease more accurately and

efficiently. For a detailed review about omics studies

and HTD, see Schneider et al. [11]. Since multiple

types of HTD analyses have revealed that our current

understanding of molecular biology and chemical

biology remains incomplete and fragmentary [12],

a number of open-access databases could be a good

complement for identifying aberrant pathways and

network activities from HTD [13–15]. In addition,

numerous tools have been developed for visually

exploring and analyzing biological pathways and net-

works including Cytoscape [16], VisANT [17],

GeneGO (http://www.genego.com/), Ingenuity

(http://www.ingenuity.com/), and Pathway Studio

[18]. Table 1 summarizes high-throughput omics

techniques, their applications, related sources and

some representative references.

HTDANALYSIS
Analyses of HTD have allowed us to investigate ab-

errant pathways and networks at the systems level.

Because biological data and related annotation infor-

mation about genes, proteins, pathways and net-

works have been accumulated by different research

groups, the challenge is to discover ways to integrate

these different omics data sources to yield new in-

formation about pathways, networks and diseases. In

the following section, we review recent advances in

the identification of the activities of pathways and

networks as well as their aberrancies by integrating

heterogeneous sources of HTD. Figure 1 depicts

the workflow of a typical study involving high-

throughput omics data to identify aberrant pathways

and network activities. As shown in the figure, data

analysis involves preprocessing steps, such as noise

filtering, background subtraction, and normalization,

which may affect the performance of subsequent

analyses, for example, feature selection (e.g. selection

of differentially expressed genes, differentially abun-

dant ions, etc.) and pathway analysis. Two sources of

variability tend to impact the analysis of data from

high-throughput technologies: (i) Errors which have

the same impact on all measurements and thus sys-

tematically bias all the data. Since such errors are

systematic, they can be addressed by normalizing

the data [31]; (ii) Noise, which is stochastic in

nature. Such random noise is difficult to remove

by normalization methods, but its impact can be

reduced through noise-filtering methods and/or by

using adequate number of replicates. Data pre-

processing methods are useful for minimizing such

measurement variabilities and noise. The appropriate

method for a specific dataset depends on the specific

technology and experimental design used. For ex-

ample, image or signal processing methods may be

necessary to extract features from raw images/data.

Identification of aberrant pathways and network activities 407
 at E

T
H

 Z
Ã

¼
rich on January 18, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


Ta
bl
e
1:

O
m
ic
s
hi
gh
-t
hr
ou

gh
pu

t
te
ch
ni
qu

es
,a
pp
lic
at
io
ns
,a
nd

us
ef
ul

re
so
ur
ce
s

O
m
ic
s
St
ud

ie
s

Te
ch

no
lo
gy

A
pp

lic
at
io
n

R
el
at
ed

so
ur

ce
s

G
en
om

ic
s/

Ep
ig
en
om

ic
s

aC
G
H

SN
P
ge
no

ty
pi
ng

ar
ra
ys

N
ex
t-
ge
n
se
qu

en
ci
ng

D
N
A
m
et
hy
la
tio

n
ar
ra
y

C
hI
P-
ch
ip

ar
ra
ys

C
hI
P-
se
q

sm
al
lR

N
A
-s
eq

D
et
er
m
in
at
io
n
of

va
ri
at
io
ns

in
th
e
D
N
A

se
qu

en
ce

fo
r
di
se
as
e
di
ag
no

si
s,

pr
ed
ic
tio

n
of

th
e
ri
sk

of
fu
tu
re

di
se
as
e
in

he
al
th
y
in
di
vi
du

al
s,
an
d
id
en
-

ti
fic
at
io
n
of

un
af
fe
ct
ed

in
di
vi
du
al
s
w
ho

ca
rr
y
on

e
co
py

of
a
ge
ne

fo
r
a

di
se
as
e
th
at

re
qu
ir
es

tw
o
co
pi
es

of
th
e
di
se
as
e
to

m
an
ife

st
;m

et
hy
la
-

tio
n
pr
of
ili
ng

fo
r
th
e
id
en
ti
fic
at
io
n
of

ab
er
ra
nt
ly
m
et
hy
la
te
d
ge
ne

s
in

ca
nc
er
;c
hr
om

at
in

Im
m
un

op
re
ci
pi
ta
tio

n
ar
ra
ys

or
se
qu

en
ci
ng

fo
r
th
e

st
ud

y
of

D
N
A
-p
ro
te
in
in
te
ra
ct
io
ns
,h
is
to
ne

m
od

ifi
ca
tio

ns
;i
de
nt
ifi
ca
tio

n
an
d
ch
ar
ac
te
ri
za
tio

n
of

no
n-
co
di
ng

R
N
A
m
ol
ec
ul
es
.[
19
,2

0,
21
^2
3]

EB
Ig
en
om

es
:h

tt
p:
//
w
w
w
.e
bi
.a
c.
uk

/g
en
om

es

ht
tp
://
w
w
w
.e
ns
em

bl
.o
rg
/in

de
x.
ht
m
l

M
ou

se
ge
no

m
e:

ht
tp
://
w
w
w
.in

fo
rm

at
ic
s.
ja
x.
or
g

R
at

G
en
om

e:
ht
tp
://
rg
d.
m
cw

.e
du

Sa
cc
ha
ro
m
yc
es

ge
no

m
e:

ht
tp
://
w
w
w
.y
ea
st
ge
no

m
e.
or
g

A
ce
D
B
ge
no

m
e:

ht
tp
://
w
w
w
.a
ce
db
.o
rg
/in

tr
od

uc
tio

n.
sh
tm

l

H
IV

Se
qu

en
ce
:h

tt
p:
//
w
w
w
.h
iv.
la
nl
.g
ov
/c
on

te
nt
/s
eq
ue
nc
e/
H
IV
/m

ai
np

ag
e.
ht
m
l

G
en
e
on

to
lo
gy
:h

tt
p:
//
w
w
w
.g
en
eo

nt
ol
og

y.
or
g

H
um

an
m
it
oc
ho

nd
ri
al
ge
no

m
e
da
ta
ba

se
:h

tt
p:
//
w
w
w
.m

it
om

ap
.o
rg

Tr
an
sc
ri
pt
om

ic
s

m
R
N
A

ar
ra
ys

m
iR
N
A

ar
ra
ys

nc
R
N
A

ar
ra
ys

R
N
A
-S
eq

G
en
e
ex
pr
es
sio

n
pr
of
ili
ng

fo
r
th
e
m
ol
ec
ul
ar

cl
as
si
fic
at
io
n
of

tu
m
or
s
w
it
h

im
pa
ct

on
tr
ea
tm

en
t
an
d
cl
in
ic
al
m
an
ag
em

en
t,
bi
om

ar
ke
r
di
sc
ov
er
y,

an
d
id
en
ti
fic
at
io
n
of

ne
w

R
N
A
m
ol
ec
ul
es

su
ch

as
nc
R
N
A
s.
[2
4
^2
6]

A
rr
ay
Ex

pr
es
s:
ht
tp
://
w
w
w
.e
bi
.a
c.
uk

/a
rr
ay
ex
pr
es
s/

G
EO

:h
tt
p:
//
w
w
w
.n
cb
i.n
lm
.n
ih
.g
ov
/g
eo

m
iR
B
A
SE
:h

tt
p:
//
w
w
w
.m

ir
ba
se
.o
rg

C
om

pa
ra
tiv

e
R
N
A
:h

tt
p:
//
w
w
w
.r
na
.c
cb
b.
ut
ex
as
.e
du

N
on

co
di
ng

R
N
A
da
ta
ba
se
:h

tt
p:
//
w
w
w
.n
cr
na
.o
rg
/fr
na
db

C
om

pr
eh
en
siv

e
R
ib
os
om

al
R
N
A
da
ta
ba

se
:h

tt
p:
//
w
w
w
.a
rb
-s
ilv
a.
de
/

G
en
om

ic
tR
N
A
da
ta
ba

se
:h

tt
p:
//
gt
rn
ad
b.
uc
sc
.e
du

m
iR
N
A

se
qu

en
ce
s:
ht
tp
://
w
w
w
.e
bi
.a
c.
uk

/e
nr
ig
ht
-s
rv
/M

ap
M
i/

Pr
ot
eo

m
ic
s

M
as
s
sp
ec
tr
om

et
ry

C
hr
om

at
og
ra
ph
y

Pr
ot
ei
n
m
ic
ro
ar
ra
ys

In
te
ra
ct
om

ic
s

La
rg
e-
sc
al
e
qu

an
ti
fic
at
io
n
an
d
ch
ar
ac
te
ri
za
tio

n
of

pe
pt
id
es

or
pr
ot
ei
ns
.

Id
en
ti
fic
at
io
n
of

po
st
-t
ra
ns
la
tio

na
lm

od
ifi
ca
tio

ns
.S

tu
dy

of
pr
ot
ei
n
^

pr
ot
ei
n
in
te
ra
ct
io
ns

in
a
hi
gh
-t
hr
ou

gh
pu

t
m
an
ne
r.
[2
7,
28

]

U
ni
Pr
ot
:h

tt
p:
//
w
w
w
.u
ni
pr
ot
.o
rg

PI
R
:h

tt
p:
//
pi
r.g

eo
rg
et
ow

n.
ed
u

G
O
:h

tt
p:
//
w
w
w
.e
bi
.a
c.
uk

/G
O
A
/in

de
x.
ht
m
l

pf
am

:h
tt
p:
//
pf
am

.s
an
ge
r.a
c.
uk

Pr
ot
ei
n
D
at
a
B
an
k
in

Eu
ro
pe
:h

tt
p:
//
w
w
w
.e
bi
.a
c.
uk

/p
db

e

Pe
pt
id
eA

tla
s:
ht
tp
://
w
w
w
.p
ep
tid

ea
tla

s.
or
g

M
et
ab
ol
om

ic
s

M
as
s
sp
ec
tr
om

et
ry

C
hr
om

at
og
ra
ph
y

N
uc
le
ar

m
ag
ne

tic
re
so
na
nc
e

C
ry
st
al
lo
gr
ap
hy

Q
ua
nt
ifi
ca
tio

n
an
d

ch
ar
ac
te
ri
za
tio

n
of

m
et
ab
ol
it
es

an
d

ot
he
r

sm
al
l

m
ol
ec
ul
es
.

To
xi
ci
ty

as
se
ss
m
en
t/
to
xi
co
lo
gy
.

Pr
ed
ic
tio

n
of

th
e
fu
nc
tio

n
of

un
kn

ow
n
ge
ne
s
by

co
m
pa
ri
so
n
w
it
h
th
e

m
et
ab
ol
ic
pe
rt
ur
ba
tio

ns
ca
us
ed

by
de
le
tio

n/
in
se
rt
io
n
of

kn
ow

n
ge
ne
s.

[2
9,
30
]

M
M
C
D
:h

tt
p:
//
m
m
cd
.n
m
rf
am

.w
is
c.
ed
u/

H
M
D
B:
ht
tp
://
w
w
w
.h
m
db
.c
a/

M
et
lin
:h

tt
p:
//
m
et
lin
.s
cr
ip
ps
.e
du
/

Li
pi
dM

ap
s:
ht
tp
://
w
w
w
.li
pi
dm

ap
s.
or
g/
se
ar
ch
/s
ea
rc
h.
ht
m
l

G
ab
iP
D
:h
tt
p:
//
w
w
w
.g
ab
ip
d.
or
g/

408 Wang et al.
 at E

T
H

 Z
Ã

¼
rich on January 18, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


Background subtraction methods allow us to esti-

mate and remove background signals from meas-

urement signals. Normalization methods enable

us to reduce systematic bias to enable compari-

sons between data from various experiments.

Transformations such as Z-score and log transforms

allow us to modify the data distribution so that it will

be better suited for feature selection by statistical or

machine learning methods.

An analysis of sensitivity and specificity is import-

ant in evaluating the performance of candidate bio-

markers or disease outcome predictors identified by

HTD analysis. The receiver operating characteristic

(ROC) is commonly used to assess the performance

of candidate biomarkers [32]. An important weak-

ness of many machine learning methods is that they

are not based on a probabilistic model. Therefore,

probability levels and confidence intervals cannot be

readily associated with their predictions. The confi-

dence that an analyst can have in the accuracy of the

prediction results is based purely on the predictor’s

historical accuracy—how well it has predicted the

desired response in other, similar situations. Thus,

after learning is completed, the prediction model

must be evaluated for its performance through a pre-

viously unseen testing data set (also known as a blind

validation set). The purpose of this testing is to dem-

onstrate the adequacy or to detect the inadequacy of

the selected features (e.g. biomarkers) or of the pre-

diction model. An inadequate performance may be

attributable to insufficient or redundant features, in-

appropriate selection of the model structure, too few

or too many model parameters, insufficient training,

overtraining, error in the program code or complex-

ity of the underlying system, such as the presence of

highly nonlinear relationships, noise and systematic

bias. The goal of evaluating a predictor is to ensure

that it is able to serve as a general model whose

input–output relationships (derived from the training

set) apply equally well to a new dataset derived from

the same problem, but which was not included in

the training set. Thus, ensuring the generalization of

the relationships learned on the training set to the

new dataset is necessary. Various methods have been

used to test the generalization capability of a predic-

tion model. These include the k-fold cross-

validation, bootstrapping and hold-out methods

[33, 34, 27]. In addition to evaluating the

Figure 1: Aworkflow for identification of aberrant pathways and network activities from high throughput data.
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performance of candidate biomarkers or disease out-

come predictors by computational methods, exam-

ining their performance in samples from a large

population and using technologies other than those

used during the discovery phase may be necessary.

For example, biomarkers discovered by microarray

gene expression profiling or by mass spectrometric

methods could be validated using real-time poly-

merase chain reaction (RT-PCR), Western blot,

enzyme-linked immunosorbent assay (ELISA), etc.

These experimental validation methods can be

applied to functional modules as well as to pathways

and their cross-talk [35].

Various HTD-based computational methods can

be used for modeling aberrant pathways and network

activities [27] and for identifying functional modu-

larity [36, 37], as well as for applications that include

biomarkers discovery [33, 38, 39]. These computa-

tional techniques include statistical methods [40, 41],

graph theory/models [42, 43], probabilistic graphical

models [44], rule-based inferences approaches [45],

logic-based models [45, 46], machine learning meth-

ods [37, 47], knowledge-based models including text

mining and function annotation [37, 48, 49] and

mechanistic differential equation-based models

[6, 50] that capture temporal and spatial dynamics

at the level of individual reactions. The advantages

of these methods are their applicability to situations

in which mechanistic information is incomplete or

fragmentary. They provide useful insights into the

links between disease and pathways and network

activities. The choice of an appropriate modeling

approach relies on the question being posed, the

quality and type of experimental data, and prior

knowledge about the pathway/network. Table 2

summarizes computational models and data sources

used for analyzing pathways and networks. A de-

tailed review of gene regulatory network modeling

approaches can be found in Hecker et al. [51]. For a

review of metabolic pathways analyses, see Trinh

et al. [52]. Sardiu et al. [53] provide a review about

building protein interaction networks.

INTEGRATIONOF OMICS DATA
FOR IDENTIFICATIONOF
ABERRANT PATHWAYSAND
NETWORK ACTIVITIES
The advantages of integrating omics data to identify

aberrant pathways and network activities clearly lie

in that we can address systems-specific questions in

biology, model systems-wide behavior, estimate cel-

lular structures, generate new insights into basic re-

search, develop new drugs and personalize genomic

medicine [71]. Although many researchers have

made great strides toward increasing the power of

integrative analysis over that of a single measurement

platform in order to identify changes in pathway and

network activities [34, 27, 54], the need for more

effective methods of integrating omics data is still

urgent. These methods should be capable of accom-

modating various sources of binary, categorical and

continuous data as well as being suitable for handling

missing data, high error rates and systematic biases in

the data. In addition, they should be able to deal

with reducing the dimensionality of omics data for

effective interpretation and visualization of the ana-

lysis results. Figure 2 depicts a schematic outlining of

the steps involved in integrating omics data sets for

the identification of aberrant pathways and network

activities. As shown in Figure 2, the identification

approach is generally comprised of three steps:

(i) identifying the network structure from a

high-throughput omics dataset that focuses on inter-

acting transcriptomics, genomics, and protein–

DNA interactome information coupled with the

known pathway information extracted from public

databases such as KEGG [13], Reactome [4] or PID

[15]; (ii) decomposing or clustering the network into

sub networks, pathways or modules; and (iii) de-

veloping cellular models to simulate and predict net-

work activities that give rise to cellular phenotypes.

The simplest integration approach is to treat each

data set independently and combine the results

using union, intersection or majority vote rules.

However, no clear method exists for weighting the

confidence of different assays. Reviews on the inte-

gration of omics data can be found in works by

Tsiliki and Kossida [72] and Jacobs and Wang [73].

Methods for omics data integration include network

and graph models [54], Bayesian models [58], kernel

models and support vector machines (SVM) [74, 75].

In particular, Bayesian methods are commonly used

for omics data integration because they allow the

combining of highly dissimilar types of heteroge-

neous omics data and various online databases.

They can also express causal relationships and glean

from incomplete datasets while avoiding data over

fitting. Integration of omics data has led to identify-

ing biomarkers that are associated with cancer states

[33, 19], to elucidating aberrant pathways [54, 20],
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and to constructing models of dysregulated networks

[27, 65]. However, integration of omics data con-

tinues to be challenging due to incomplete data, high

noise, lack of uniform and standardized data

representations, data quality issues, and lab-to-lab

variations. The problem is how to interpret and in-

tegrate omics datasets in ways that allow researchers

and practitioners to understand the principles under-

lying the regulation of genes, metabolites and pro-

teins. Another problem is comprehending how their

combined interactions are associated with variations

in phenotype. In the remaining sections, we review

recent significant contributions to the identification

and application of aberrant pathways and network

activities using multiple types of HTD.

IDENTIFICATIONOF
DYSREGULATED PATHWAYSAND
BIOLOGICALNETWORK
ACTIVITIES
One of the most important questions that has been

addressed in recent years is how genetic differences

between individuals lead to differences in disease

pathways and thus to differences in biological pheno-

types [33, 20]. Data-driven computational models

that have been especially useful in this area include

PARADIGM [20] and ResponseNet [54] as well as a

few others that have been published recently [2, 8,

47, 50]. In the following, we highlight examples of

previously published studies, in which various HTD

have been used for the identification of aberrant

Figure 2: A schematic outlining the steps involved in omics data integration for identification of aberrant path-
ways and network activities. PP: protein-protein (interaction); PD: Protein DNA (interaction); DD: domain-domain
(interaction); GE: gene expression; TFBS: transcription factor binding site.
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pathways and networks. From these examples, we

observe that several approaches to integrating omics

data from different sources have proved to be pro-

mising and biologically meaningful for studying ab-

errant pathways and network activities. However,

the integrated reconstruction and analysis of aberrant

biological networks are hampered by difficulties such

as insufficient experimental data, annotation differ-

ences, multiple interpretations, and integrating het-

erogeneous and diverse data [76].

Signaling pathways
Recently, Vaske et al. [20] developed a probabilistic

graphical-based model known as PARADIGM to

identify patient-specific pathway activities in The

Cancer Genome Atlas (TCGA) glioblastoma multi-

forme (GBM). They integrated four different omics

data types including copy number alteration (CNA),

mRNA, protein levels and activity of the protein in a

single patient to infer the activities of genes, products

and abstract process inputs and output for a single

PID pathway [15]. A matrix of integrated pathway

activities for each patient was used to identify asso-

ciations with clinical outcomes. Clustering the GBM

patients based on PARADIGM revealed patient sub-

types correlated with different survival profiles,

whereas using single expression data or CNA data

did not. In addition, PARADIGM inferred signifi-

cantly altered gene activities in tumor samples from

both GBM and breast cancer with fewer false posi-

tives compared with other approaches. PARADIGM

has also addressed questions about how the hetero-

geneity and complexity of pathway changes could

affect different individuals [20]. Recently, Masica

et al. [77] extended this idea by employing an ex-

haustive model-free pipeline that suggested ways

that mutated genes participate in the progression of

GBM cancer and, subsequently, allowed for the in-

tegration of gene expression and gene sequencing

data as well as literature mining to delineate the

method. Although the two methods were similar,

Masica et al.’s was advantageous in that

PARADIGM relies on pre-existing knowledge

about gene annotations, protein interactions and

curated pathways, whereas Masica et al.’s did not.

Another example of integrating genomics, tran-

scriptomics and protein–protein interactomes to

infer changes in the context of the relationship be-

tween signaling protein interactions and transcrip-

tional regulation was reported by Yeger-Lotem

et al. [54] using ResponseNet. This method treats

genetic library screening results and transcriptional

changes in the context of the relationship between

signaling protein interactions and transcriptional

regulation. By integrating gene expression, genetic

library and ChIP-chip data into a graph,

ResponseNet has successfully identified the pathways

involved with a-synuclein toxicity as well as the

genes differentially regulated by these pathways.

However, this approach relies on downstream tran-

scriptional changes to drive discovery and thus may

miss important changes in protein interactions that

are not involved with transcriptional change.

Ochs et al. [34] proposed a differential expression

for a signaling determination (DESIDE) model based

on a Bayesian decomposition algorithm. Applying

DESIDE to the analysis of microarray data derived

from gastrointestinal stromal tumors (GIST) time

series cell line and GIST patients, they identified

treatment-induced aberrancies in the KIT signaling

pathway activities that drive changes in the activity

levels of transcriptional regulators [34].

Other interesting contributions include the appli-

cation of logic models to the identification of bio-

logical pathways from HTD [45, 46]. By integrating

mutational, transcriptional and proteomic data for 30

breast cancer cell lines, Heiser et al. [45] generated a

signaling network model that identified the ErbB/

MAPK signaling pathway and network modules

active in specific subsets of cell lines. They built a

unique signaling pathway model for each cell line.

The rules of the models represented biochemical re-

actions, and each model had an initial state that

included all proteins present in a particular cell line.

Signaling was represented by rule sets based on ex-

perimentally derived protein–protein interactions,

which determined a sequence of model states.

Heiser et al. [45] simplified their assumptions by spe-

cifically discretizing both the data, i.e. each protein

component was either ‘present’ or ‘absent’ in each

state, and the rules that defined the signaling be-

tween these active states. However, the simplicity

of this method, especially discritizing the data, may

ignore important information about proteins in a

system.

Cross-talk pathways
Progress has been made in the quantified analysis of

cross-talk pathways. Diseases such as arthritis and dia-

betes are often seen as resulting from the dysregula-

tion of multi-pathways, dynamic cross-talk and

networks [78, 79]. For instance, Wang et al. [6]
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used Monte Carlo methods and data-driven kinetic

modeling to quantify the magnitudes of cross-talk

and negative feedback interactions in a signaling net-

work. They found possible cross-talk between the

PI3K and Erk pathways: Ras and PI3K activate

Erk signaling independently and PI3K enhances

Erk activation at points both upstream and down-

stream of Ras. These results show that integration of

kinetic modeling with HTD provides a systematic

and quantitative method for understanding pathway

cross-talk. Extending this model to the analysis of

large scale datasets seems promising.

Regulatory network activities
Recent advances in identifying biological network

activities have enabled researchers to obtain a snap-

shot of the biological process in cells. For instance,

Huang et al. [27] employed a prize-collecting Steiner

tree (PCST) algorithm to construct a regulatory net-

work that explains both known and previously

hidden components of yeast pheromone response

pathways. This was accomplished by integrating ex-

perimental protein–protein interactions and tran-

scriptional data with protein interaction databases.

The Steiner tree was successful in balancing the

introduction of false positive interactions from ex-

perimental data with the loss of key interactions.

However, the Steiner tree, which aims to find the

tree with the minimum total length, cannot handle

large scale networks and requires high quality data

sets for seamless integration of multiple data types.

ResponsNet has successfully revealed most of the

expected pathways in yeast and detected changes

that had not been detected by mass spectrometry

in pheromone-induced MAKP pathway compo-

nents such as CPA1, STE11 and BEM1.

Metabolic network activities
Identification of aberrant metabolic networks has

been investigated [65, 29]. For example, Yizhak

et al. [65] proposed an integrative omics-metabolic

analysis (IOMA) method, which modeled a metabol-

ic network by integrating quantitative proteomic and

metabolomic data and predicted alterations in the

metabolic flux under various perturbations. They

formulated the problem using quadratic program-

ming to seek a steady-state flux distribution in

which the flux through the reactions was measured

using proteomic and metabolomic data. Through

validation sets, Yizhak et al. showed that IOMA

had a significant advantage over other commonly

used methods of flux balance analysis (FBA) and

minimization of metabolomic adjustment (MOMA).

APPLICATIONSOF PATHWAYAND
NETWORK-BASED
COMPUTATIONALMETHODS
In the following section, we present some of the

applications of pathway and network-based

approaches including the identification of functional

modules and biomarker discovery using HTD.

Identification of functional modules
Great progress has been made in applying informa-

tion about aberrant pathways and networks to the

identification of functional modules, that is, groups

of biological entities (e.g. gene, protein) that perform

biological tasks (e.g. biological processes) that the

constituent parts could not perform if they were

dissociated [37, 80]. Sequence mutations, copy

number alterations, gene fusion events or epigenetic

changes can all lead to changes in the functions of

such modules. In the following, we discuss three pre-

viously published examples. The first two examples

use information from altered network activities to

identify functional modules, whereas the third ex-

ample uses information from aberrant pathways.

Wu et al. [37] studied functionally related genes

using biological pathway-based inferences to extract,

cleanse and filter false positives and noise out of data.

The protein functional interactive networks they

built included protein–protein interactions, gene

co-expressions, protein domain interactions, gene

ontology (GO) annotations, and text-mined protein

interactions. Applying their method to GBM, breast,

colorectal and pancreatic cancers, they found that

most samples from these cancers have sequence-

altered genes involving commonly known onco-

genes and signal transduction modules.

To investigate the combined effect of single mark-

ers/genes on mediating complex diseases and traits,

Jia et al. [36] proposed an integrative approach for

identifying candidate subnetworks by integrating

the association signal from genome-wide association

studies (GWAS) into human protein–protein inter-

action networks. The core searching algorithm was

modified from a previous method [81] that was de-

signed for module searching in gene expression data-

sets. This approach was able to identify functional

modules with higher association signals compared

to previously published methods. The top-ranked
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module is comprised of 12 genes including BARD1,

FGFR2 and GSK3B, which are strongly enriched in

breast cancer.

Recently, Koeva et al. [82] developed a computa-

tional method, stemness meta-analysis pipeline

(S-MAP), to test coordinately for modules and indi-

vidual genes that are up-regulated (stemness-on) or

down-regulated (stemness-off) in stem cells. By inte-

grating gene functional modules derived from path-

ways, protein–protein interactions, homologs and

protein complexes, and by extracting multiple gene

modules and differential expressed genes from differ-

ent microarray gene expression databases, they uti-

lized several statistical scores to identify 40 genes and

224 stemness modules upregulated in multiple stem

cell types and metastatic populations compared to

non-metastatic populations. Their methods demon-

strate how omics data can be used to classify normal,

cancer and metastatic stem cells.

Biomarker discovery
Biomarkers are primarily molecular markers, such as

genes, proteins, metabolites, glycans and other mol-

ecules, that can be used for disease diagnosis and

prognosis, for predicting therapeutic responses and

for developing therapies [38]. Information derived

from aberrant pathways and network activities facili-

tates the detection of diagnosis and treatment bio-

markers [83], the identification of novel drug targets

[19], the classification of disease types [84] and the

prediction of outcomes [33, 84–86]. Omics data-

driven methods for identifying diagnosis, prognosis

markers and therapeutic targets include machine

learning methods [19, 83], graph theory [33] and

statistical methods [83]. Many studies have capita-

lized on aberrant pathway and network activities

coupled with omics data integration strategies to

identify biomarkers. In the following, we present

four published studies. The first example used infor-

mation from altered network activities to identify

biomarkers, whereas the remaining examples utilized

information from aberrant pathways.

For example, Taylor et al. [33] studied the altered

modularity of a protein interaction network to

predict breast cancer outcomes by examining the

biochemical structure of an interactome. They em-

ployed the method proposed by Han etal. [87] to use

static properties of a network to measure the hubs in

protein interaction networks. Hubs associated with

cancer were normalized for the frequency of each

hub type and for significant differences in the

distribution of hubs between cancer and non-cancer

genes, as determined by Fisher’s exact test. For in-

stance, dynamic network properties connected with

breast cancer show that the expressions of BRCA1

and its interactors (e.g. BRCA2 and MRE11) are

highly correlated between protein pairs in surviving

patients, whereas that organization is lost in patients

who die of the disease. This suggests that an altered

modularity of these human interactomes may be a

biomarker of breast cancer prognosis.

Recently, Andre etal. [19] identified greatly ampli-

fied changes in the DNA copy number of the

FGRR1, VEGFA, E2F3 and NOTCH4 genes. By

studying the correlation of DNA copy number with

gene expression and the patients’ response to ther-

apy, they confirmed that these genes are potential

therapeutic targets and could be biomarkers useful

for classifying breast cancers. Their integrative ana-

lysis of comparative genomic hybridization (CGH)

arrays and matched gene expression array data

demonstrated that DNA copy number anomalies

are strongly associated with chemotherapy efficacy.

Therefore, their results included several potential

therapeutic target genes that were identified by ana-

lyzing anomalies in the DNA copy numbers and

gene expression data.

Another interesting example of biomarker discov-

ery is that Sreekumar et al. [30] combined prior

knowledge of gene expression and transcription

factor binding in prostate cancer with liquid and

gas chromatography-based mass spectrometry to

identify an alteration in a key metabolite, sarcosine,

which appeared to be associated with prostate cancer

progression. However, subsequent studies have ques-

tioned the validity of sarcosine as a biomarker of

prostate cancer progression [88–90].

In addition to the discovery of diagnostic bio-

markers and disease outcome predictors, one of the

promising applications of signaling pathway research

is that understanding the dysfunctional responses of

signaling pathway associated with cancer could lead

to the discovery of more effective and selective ther-

apy targets. Mutational activation of Ras, which is

involved in cellular signal transduction, can cause

human cancers [59]. K-Ras is an oncoprotein and

is an early player in Ras signal transduction pathways.

Singh et al. [83] used first whole-genome SNP array

data to identify molecular features that distinguish

K-Ras-dependent and K-Ras-independent cancer

cell lines. They found that the vast majority of

K-Ras-dependent cell lines exhibited focal K-Ras
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genomic amplification. Based on gene expression

data from K-Ras-dependent and K-Ras-

independent cell lines, they identified ‘K-Ras de-

pendency signature’ genes (involving the kinases

SYK and RON), which can potentially serve as can-

didate therapeutic targets. The identification of these

signature genes was performed using the prediction

analysis of microarrays (PAM) algorithm. Expression

of the Ras dependency signature genes was found

predominantly in K-Ras mutant tumors.

The primary goal of most of the approaches re-

viewed here was to identify disease biomarkers based

on integrating HTD and pathway/network informa-

tion. This has allowed researchers to better under-

stand: i) network-based mechanisms underlying

complex common diseases; ii) strategies to improve

disease classification; iii) approaches to enhance ro-

bustness in biomarker selection and disease classifica-

tion; and iv) the identification of potential disease

drivers or causal agents at various levels of biological

organization. However, efforts to integrate different

types of HTD and pathway and network informa-

tion into biomarker discovery studies must continue.

CONCLUSIONSANDOUTLOOK
Recent studies have shown that significant progress

has been made in understanding aberrant pathways

and identifying network activities using high-

throughput techniques. The examples cited in this

review demonstrate that a well-built data integration

model has the power to correctly explain observa-

tions, identify relationships between different bio-

logical components, and lead to deepened insight

into biological mechanisms.

Many advances in understanding complex diseases

have been achieved via HTD. Among them, perhaps

the most remarkable are achievements in identifying

changes in the genetic entities involved in pathways

and networks. Researchers have used diverse data

sources from varying perspectives to study the eti-

ology of complex diseases, including cancer.

This review presents studies that used various com-

putational methods coupled with HTD to solve

specific problems in the biomedical research field.

The successful application of these methods can be

instructive by providing guidance into ways to con-

tinue uncovering the mechanisms of disease. Although

the choice of computational methods depends on the

specific problem and the omics data available, some

computational methods seem preferential for specific

pathway and network inference problems. For ex-

ample, for signaling pathways, Bayesian networks

[34], graph theory [54], Boolean networks [45] and

perturbation measurements [50] are preferable. For

modeling gene regulatory pathways, dynamic

Bayesian models [58], graph theory [91] and gene set

enrichment analysis [55] seem to be appropriate. The

methods for modeling metabolic pathways have

focused on Petri-nets [62], extreme pathway analysis

[63], stochastic models [64] and graph theory [42]. The

simplest model for gene regulatory networks and

pathways is the Boolean network. Amit et al. [50]

used a perturbation-based approach to build a network

of cell signaling pathways that form the mechanistic

basis for pathogen-specific responses by dendritic cells

with meshed RNA interference screening and global

transcriptional profiling [50]. Faust etal. [42] applied a

subgraph approach to extract metabolic pathways

from metabolic networks using metabolomic data.

Through the application of these methods, a cohort

of biomarkers has been identified for future drug de-

velopment [19, 83, 92–94]. In spite of the great

achievements made to date, identifying aberrant path-

ways and networks via high-throughput assays is still a

new and developing field.

Understanding the aberrancies in biological path-

ways and networks responsible for complex diseases

is far from complete. The use of HTD together with

large-scale biological databases (e.g. protein–protein

interaction and pathway databases) is crucial for un-

covering aberrant biological processes. The current

volume of omic data is large and diverse, but even

larger and more complete data are required to allow

for better understanding of the mechanisms, the het-

erogeneity and complexity of many common dis-

eases such as cancer. Much work has yet to be

done to identify the subnetworks of metabolic

reactions associated with each disease. A reliable

computational approach for identifying subnet-

work-associated diseases is currently limited by the

incompleteness of the interactome maps available

and by the limitations of the existing tools.

Gaining an integrated understanding of the inter-

actions among the genome, the proteome, the en-

vironment and pathophenome, as mediated by the

underlying cellular network, may offer a basis for

future advances. Currently, some of the most diffi-

cult problems in this area include understanding and

finding ways to identify dynamic (rather than static)

processes in the cell, connecting molecular level

network activities to functional behavior at cellular
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level, developing a data-driven computational model

that reflects the causal relationships between drug

targets and biomarkers, measuring the changes that

occur in cellular dynamic processes, and intervening

in the system to change a given outcome.

An especially challenging research focus of par-

ticular importance is to find ways to model changes

in biological entities which could affect the dynamics

of the biological process using large-scale, diverse

omics data. Network-based research is shifting its

focus toward integrated multiple networks or

toward networks composed of heterogeneous

large-scale data. At this point, in order to process

large scale omics data, researchers should consider

focusing on developing algorithms and tools for

studying the relationships between aberrant human

genes, proteins and interactome networks, on pre-

dicting new human disease-associated genes based on

pathways and networks, and on analyzing network

perturbations caused by pathogens.

Key points

� Computational methods for analysis of high-throughput omics
data to identify characteristic aberrancies in the biological path-
ways and molecular network activities and elucidate their rela-
tionship to the disease.

� Successful applications of pathway and network-based computa-
tional methods for functional module identification and biomar-
ker discovery.

� Future directions ofresearch in this field including: (i) the integra-
tion of heterogeneous and diverse data at different levels, such
as DNA, mRNAs, protein and metabolites; (ii) the need for
advanced algorithm and tools to better understand themechan-
ism of the disease cellular pathways and networks; (iii) ways of
modeling aberrant biological entities that could affect the
dynamics of biological process using large scale anddiverse data.
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