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In the quest to reconstruct the Tree of

Life, researchers have increasingly turned

to phylogenomics, the inference of phylo-

genetic relationships using genome-scale

data (Box 1). Mesmerized by the sustained

increase in sequencing throughput, many

phylogeneticists entertained the hope that

the incongruence frequently observed in

studies using single or a few genes [1]

would come to an end with the generation

of large multigene datasets. Yet, as so often

happens, reality has turned out to be far

more complex, as three recent large-scale

analyses, one published in PLoS Biology

[2–4], make clear. The studies, which deal

with the early diversification of animals,

produced highly incongruent (Box 2)

findings despite the use of considerable

sequence data (see Figure 1). Clearly,

merely adding more sequences is not

enough to resolve the inconsistencies.

Here, taking these three studies as a case

in point, we discuss pitfalls that the simple

addition of sequences cannot avoid, and

show how the observed incongruence can

be largely overcome and how improved

bioinformatics methods can help reveal

the full potential of phylogenomics.

Hurdles to Phylogenomics

Two factors contribute significantly to the

difficulty of reconstructing the correct phylo-

genetic tree for a set of sequences. First, if

speciation events are closely spaced in time,

the amount of phylogenetic signal is often

small, leading to short internal tree branches

that are difficult to resolve [5,6]. Second, if

the events of interest are ancient, terminal

branches tend to be long and replete with

multiple substitutions occurring at the same

position (i.e., homoplasy). In the extreme

case, insufficient signal may remain for very

deep divergences to be resolved even when

using very long gene sequences [7]—but this

issue is outside the scope of the present

contribution. Depending on the accuracy of

the model of sequence evolution, multiple

substitutions can go undetected or be wrongly

inferred. In both situations spurious phyloge-

netic signals are generated; these constitute

the major part of what we collectively term

non-phylogenetic signal. The best known

example of the misleading effect of non-

phylogenetic signal is the long branch

attraction (LBA) artifact [8]: when two (or

more) lineages have much longer branches

than the others, they tend to group together

irrespective of their true relationships. Nota-

bly, the outgroup is a natural source of long

branches that may attract fast-evolving

(hence long branched) species of the ingroup.

When this happens, attracted branches

artifactually emerge too deeply in the tree [9].

Inferring phylogenies in difficult cases is

akin to finding a needle (phylogenetic

signal) in a haystack. Under the oversim-

plified assumption of an absence of non-

phylogenetic signal, one can compute that

the resolving power would increase from

approximately 15 million years when using

small subunit ribosomal RNA alone to less

than 1 million years when using more than

50 genes [10]. At such levels of resolution,

incomplete lineage sorting (i.e., the reten-

tion of ancestral polymorphisms over

successive speciation events) should be

taken into account as a potential source of

phylogenetic error [11]. Nonetheless, even

if conflicting gene genealogies were not an

issue, throwing additional gene sequences

at a difficult phylogenetic question does not

necessarily solve the problem—the size of

the needle is indeed increased, but so too is

the size of the haystack. It follows that non-

phylogenetic signal may become dominant

and yield incongruent, yet statistically

highly supported, phylogenomic trees [12].

How to Prevent Deleterious
Effects of Non-Phylogenetic
Signal

Non-phylogenetic signal has multiple

and disparate sources [13]. When multiple

genes are concatenated and analyzed with

standard methods (but see [14]), non-

phylogenetic signal is caused by the inclu-

sion of sequences that deviate from the true

species phylogeny or by the inability of our

methods to correctly handle multiple sub-

stitutions. In practice, it mainly stems from

(i) the incorrect identification of orthologs,

(ii) erroneous alignments, or (iii) the incor-

rect reconstruction of multiple substitutions

occurring at a given position, the last owing

to model violations in probabilistic methods
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(i.e., Bayesian inference and maximum

likelihood). Although all three aspects have

received considerable attention from theo-

reticians, and despite the availability of

numerous bioinformatics tools [15–17],

there is still no magic bullet. That is why

classic phylogenetics involves numerous

refinements and controls, which are diffi-

cult, but not impossible, to apply at a

phylogenomic scale.

Non-phylogenetic signal can be reduced

by improving (i) the quality of primary

alignments through selection of the ortho-

logous genes that are least subject to

saturation and (ii) the detection of multiple

substitutions, which is best achieved by

using both a large number of species and

the most realistic model of sequence

evolution. In the following, we show that

both improvements are required at the

same time to address the difficult question

of the relationships among major animal

groups, i.e., sponges, placozoans, cteno-

phores, cnidarians, and bilaterians. Re-

analysis of the underlying data indicates

that failure to apply one or more of the

strategies intended to decrease non-phylo-

genetic signal is what caused the incon-

gruent, though strongly supported, results

that were recently observed [2–4].

Issues at the Level of Sequence
Alignments

Selection of unambiguously orthologous

genes [18] is usually achieved by targeting

single-copy genes (e.g., mitochondrial genes)

or pre-selected genes (e.g., ribosomal RNAs

and proteins), or through automatic clus-

tering methods. None of these options are

without problems. Both manual and auto-

matic methods [19–22] heavily rely on

BLAST similarity scores, which are known

to be a poor estimator of the true

evolutionary distance [23]. Given the lim-

itations of existing methods of orthology

detection (Box 3), careful phylogenetic

analysis of each alignment is important to

achieve maximal accuracy. However, this

manual step is difficult and subjective. That

is why it is preferable to also verify orthology

a posteriori. One possibility is to assess

whether branches receiving high statistical

support from every single gene tree are

congruent with the species tree [18].

Though the latter is unknown, the phylog-

eny obtained by the concatenation of

numerous genes constitutes a reasonable

approximation. Hence, Philippe et al. [3]

looked at every supported branch (bootstrap

support [BS]$70%) from single-gene trees

that were incongruent with the concatenat-

ed tree to assess the orthology of their pre-

selected genes. Only 6.5% of the branches

were incongruent, and almost all conflicts

were best explained by reconstruction errors

affecting single-gene trees [3]. According to

this semi-automated approach, the 128

genes used in [3] can be provisionally

considered as orthologous and suitable for

phylogenetic analysis. In contrast, when

applied to the datasets of Schierwater et al.

[4] and Dunn et al. [2], the very same

approach identifies several instances of

incongruence between single-gene and con-

catenated trees (mainly apparent horizontal

gene transfers that are in fact more likely

due to contaminations, or deep unrecog-

nized paralogy; see Text S1 and Figures S1,

S2, S3, S4, S5, S6, S7, S8, S9).

This as well as the discovery of other

important issues (see Table S1) prompted

us to reassess and reanalyze the dataset of

Schierwater et al. [4]. The revised phylog-

eny we generate (Figure 2B) differs from the

original one (Figure 2A) in the deep animal

relationships: the strong support for a sister-

group relationship between Bilateria and a

group composed of placozoans, sponges

(Porifera), ctenophores, and cnidarians [4]

has vanished, and sponges are now recov-

ered as the sister group of all other

Metazoa. Strikingly, this part of the revised

tree (Figure 2B) suffers from a lack of

statistical support (all BS,50% except for

the monophyly of cnidarians). The simplest

explanation for these results (Figure 2B) is

that the genuine phylogenetic signal for

non-bilaterian animal relationships is

scarce, as reported in all previous studies

(e.g., [24–28]). The possible inclusion of

non-orthologous sequences (see Figures S1,

Box 1. From Phylogenetics to Phylogenomics

Phylogenetics, the determination of evolutionary relationships among organisms,
is central to our understanding of the evolution of life. For instance, the three
phylogenies of Figure 1 entail profoundly different interpretations about the
complexity of the common ancestor of all animals. Important body plan
characters (e.g., neurosensory and digestive systems and muscle cells) are found
in cnidarians, ctenophores, and bilaterians but not in sponges and placozoans.
According to the phylogenies of Schierwater et al. [4] and Dunn et al. [2], the
taxonomic distribution of these characters implies either (i) that the ancestral
metazoan already featured these traits and that sponges (and placozoans) have
secondarily lost them or (ii) that these characters were acquired several times
independently by convergence (e.g., in the cnidarian + ctenophore and in the
bilaterian lineages, according to the tree of Figure 1A). In contrast, the phylogeny
of Philippe et al. [3] is more congruent with morphological characters and
compatible with a simple metazoan ancestor and a later emergence of these
characters only once, in the lineage leading to the common ancestor of
coelenterates (cnidarians+ctenophores) and bilaterians.

Phylogenies are generally depicted as trees (which are non-reticulated graphs, as
in Figure 1) because vertical evolution is undisputedly the primary mechanism of
inheritance for genetic material. However, the existence of horizontal transmis-
sion (e.g., hybridization of closely related taxa, organelle acquisition through
endosymbiosis and horizontal gene transfer) makes phylogenetic trees only
pragmatic approximations, which will probably be replaced by phylogenetic
networks in the long term (particularly for unicellular organisms).

Recently, phylogenomics, the use of genomic data to infer evolutionary
relationships, has emerged as a new domain of phylogenetics. The main strength
of phylogenomics is the drastic reduction in random (or sampling) error brought
by the use of large (multigene) datasets. Numerous approaches can be used to
take advantage of genomic data (for review see [49]). Briefly, new methods based
on oligonucleotide content, gene content, or intron positions look promising (as
shown by their ability to yield reasonable trees) but require additional theoretical
developments to achieve their full potential. That is why the two most popular
phylogenomic approaches are simple extensions of the standard phylogenetics
methods applied to single-gene datasets. The first, known as the ‘‘supermatrix’’
(or superalignment), consists in concatenating numerous orthologous genes into
a single supergene, which is analyzed using standard methods (or slightly
modified methods such as separate models allowing for multiple sets of branch
lengths [50]). The second, ‘‘supertree,’’ approach takes the opposite path by first
inferring a tree for each gene in the dataset and then combining these individual
trees into a single supertree. The supermatrix approach is the most commonly
used, in agreement with the handful of studies suggesting that it offers greater
accuracy than the supertree [13,51], though this remains to be formally
demonstrated.
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Box 2. Glossary

Homology/orthology/paralogy/xenology: Genes that derive from a common ancestor are termed homologs. Two
homologous genes are orthologous if they diverged through a speciation event. In contrast, paralogs originate by duplication
of a single gene within a given lineage, whereas xenologs result from the horizontal transfer of a gene from a donor species to a
receiver species (which might eventually get its original copy replaced by the xenolog).

Homoplasy/convergence: Spurious similarity due to convergence or reversion and not to common ancestry is termed
homoplasy. Convergence describes the independent acquisition by separate evolutionary lineages of the same nucleotide (or
amino acid) at a given position. This is a direct consequence of multiple substitutions.

Incomplete lineage sorting: The transient retention of ancestral polymorphisms across speciation events. Speciations
compressed in time and large reproductive populations both increase the likelihood of this phenomenon. Considering three
lineages having rapidly diverged, by chance some sequence positions will be shared between one pair, while others will be
shared between another pair, and yet others between the third possible pair, hence blurring the phylogenetic signal on the
corresponding branches.

Incongruence: Two (or more) phylogenetic trees are said to be incongruent when they exhibit conflicting branching orders
(i.e., topologies) and cannot be superimposed. This implies that at least one node (also known as a bipartition) present in one
tree is not found in the other(s), where it is replaced by alternative groupings of taxa.

Model of sequence evolution: A statistical description of the process of substitution in nucleotide or amino acid sequences.
Complex models better approximate the evolutionary process but at the expense of more parameters and computational time.
As parameter-rich models require more data to behave properly, they have become really useful with the advent of
phylogenomic datasets.

Monophyly: To be considered monophyletic, a taxonomic group must satisfy two conditions: (i) all its taxa must derive from a
single ancestor and, reciprocally, (ii) all taxa deriving from this common ancestor must belong to the group.

Non-phylogenetic signal: The combination of different kinds of structured noise (e.g., undetected homoplasies) that
compete with the genuine phylogenetic signal during tree reconstruction. Even if the non-phylogenetic content is partly a
property of a multiple sequence alignment (notably related to its saturation level), the non-phylogenetic signal actually inferred
heavily depends on the method and the model of evolution selected. In probabilistic methods, the non-phylogenetic signal
mainly results from the data violating the model of sequence evolution. These violations arise because our models are
inevitably oversimplified in comparison to the complexity of the natural evolutionary process. Eventually, the apparent signal
analyzed will be a blend of phylogenetic and non-phylogenetic signal.

Outgroup/ingroup: Nearly all tree reconstruction methods produce unrooted trees, in which inferred relationships do not
convey any information about the direction of time. To root a tree and turn it into a phylogeny, one has to include in the
analysis a group of taxa that are known to be outside the group under study. This reference group is termed the outgroup,
while the taxa of interest make the ingroup.

Patristic distance: The sum of the lengths of the branches that connect two nodes in a phylogenetic tree, where those nodes
are typically terminal nodes representing extant taxa. It is thus an inferred distance (taking into account multiple substitutions)
greater than the uncorrected distance directly computed from the number of differences observed between the two
corresponding sequences in the alignment.

Phylogenetic signal/synapomorphy: The substitutions occurring along a given branch of the evolutionary tree. The
strength of the phylogenetic signal is proportional to the number of substitutions occurring along the branch. In non-
probabilistic methods, the signal is encoded in synapomorphies, i.e., shared residues (nucleotides or amino acids) at aligned
positions that are specific to a set of sequences derived from a common ancestor. In probabilistic methods, the amount of
phylogenetic signal actually extracted from a given dataset depends on the model and is expected to increase with the fit of
the model to the data (i.e., the ability of the model to explain the data).

Phylogenetic tree: A (connected acyclic) graph describing the estimated evolutionary relationships among a group of
species. In molecular trees, branch lengths are proportional to the genetic distances (and hence to some extent to time)
inferred from the analysis of a multiple alignment of homologous sequences (nucleotide or amino acid sequences).

Probabilistic methods: A family of tree reconstruction methods from multiple sequence alignments that are grounded in
statistical theory and make use of explicit models of sequence evolution. These include maximum likelihood and Bayesian
inference approaches and are known to be the most accurate but also the most computationally demanding.

Saturation: When sequences in a multiple alignment have undergone so many multiple substitutions that apparent distances
largely underestimate the real genetic distances, the alignment is said to be saturated. Phylogenetic inference works best with
datasets that are only slightly saturated. Owing to their reduced state space (four possible bases), nucleotide sequences
saturate more rapidly than protein sequences (20 possible amino acids).
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S2, S3, S4, S5, S6, S7, S8, S9) might create

a strong signal that could overcome the

genuine but faint phylogenetic signal, and

lead to the incorrect—but strongly sup-

ported—monophyly of ‘‘diploblasts’’ (spon-

ges+placozoans+ctenophores+cnidarians)

that was observed in the original study

(Figure 2A). Otherwise, the topology we

infer from the revised alignments is

similar to the published tree [4], with

only three nodes differing out of 21. This

demonstrates that phylogenomics is rela-

tively robust to the possible inclusion of

non-orthologous sequences when the

genuine phylogenetic signal is abundant

(see also [29,30]), which can be explained

by the randomness of most of the

introduced errors preventing the appear-

ance of a structured misleading signal.

On the other hand, phylogenomics is

sensitive to the non-phylogenetic signal

that stems from the incorrect inference of

multiple substitutions. By devoting a large

part of their dataset to mitochondrial

genomes, which are fast-evolving in Bila-

teria (e.g., [24,31]), Schierwater et al.’s

solution unwittingly favored the emer-

gence of Bilateria between the outgroup

and a group composed of all the non-

bilaterian Metazoa, because of the LBA

artifact. This artifact probably also affects

the phylogeny of Dunn et al. [2]; in that

case, the fast-evolving ctenophores are

likely attracted by the distant outgroup

(see Text S1). In the phylogeny inferred

from an updated version of the alignments

of Dunn et al. (purged of several sequenc-

ing errors and species misidentifications—

see Table S2—and completed with new

sequences, thereby reducing the amount of

missing data from 55% to 35%), sponges

are the sister group of all other Metazoa,

with the fast-evolving Ctenophora repre-

senting the sister group of Cnidaria plus

Bilateria (Figure S11; see also [32]).

In summary, analyzing the revised

alignments from Schierwater et al. [4]

and Dunn et al. [2] with their original

taxon sampling and inference methods is

sufficient to eliminate all significant incon-

gruences among the three recent phyloge-

nomic studies (Figure 1). The variability in

robustness across the tree (e.g., Figure 2)

underscores the importance of clean

phylogenomic datasets: whereas large

amounts of phylogenetic signal usually

drown out any non-phylogenetic signal,

for nodes characterized by a scarce

phylogenetic signal, even small amounts

of non-phylogenetic signal may dominate

and eventually yield incorrect results [10].

Issues at the Level of Taxon
Sampling

The lack of support observed in

Figures 2 and S11 contrasts with the high

bootstrap values obtained by Philippe

Site-homogeneous/site-heterogeneous models: Most models of sequence evolution assume that the same evolutionary
process takes place at every position (or site) of an alignment. With such models, only the evolutionary rate can be modeled as
heterogeneous across sites, usually through a gamma distribution of rates. However, selective constraints are known to be
quite heterogeneous across positions, hence seriously violating the hypotheses of site-homogeneous models. On the other
hand, site-heterogeneous models assume that the evolutionary process varies widely across sites, in particular the set of
acceptable amino acids (e.g., in the CAT model). A number of studies have demonstrated that site-heterogeneous models
provide a better fit to phylogenomic datasets and tend to reduce the sensitivity to tree reconstruction artifacts (e.g., LBA).

Figure 1. Simplified representation of the trees obtained in three recent phylogenomic analyses of early animal diversification. (A)
Schierwater et al. [4] tree. (B) Dunn et al. [2] tree. (C) Philippe et al. [3] tree. Numbers in parentheses after taxon names indicate the number of species
included in the dataset for the corresponding taxon. Bootstrap support values above 90% are indicated by a bullet (for nodes) or by underlining (for
terminal taxa). It is worth mentioning that the monophyly of Porifera is not unequivocally accepted [28,46]; only the analysis of 30,000 positions with
a rich taxon sampling and a complex model of evolution recovers it with significant statistical support [3]. Although such a sparse phylogenetic signal
will require harnessing the full potential of phylogenomics to be confidently solved, this question is outside the scope of this study. Simplified
drawings (redrawn from [74]) on the bottom illustrate the huge morphological disparity existing between the five terminal taxa. Porifera correspond
to sponges; Cnidaria to sea anemones, jellyfishes, and allies; Ctenophora to comb jellies; and Bilateria to all other animals (characterized by their
bilateral symmetry) except Trichoplax (Placozoa), which appears to be morphologically the most simply organized animal phylum.
doi:10.1371/journal.pbio.1000602.g001
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et al. [3] for the monophyly of each of the

Porifera (96%), Coelenterata (Cnidaria+C-

tenophora, 93%), and Eumetazoa (all

animals except Porifera and Placozoa,

90%) (Figure 3A). However, the number

of non-bilaterian metazoan species used in

[3] is larger, 22 versus 9 [2,4], which could

account for the difference. Indeed, it is

well known that including more species

allows for a better detection of multiple

substitutions [33], as it decreases the

amount of non-phylogenetic signal while

preserving phylogenetic signal [34]; this is

why authors often mention that their

results should be viewed as provisional

until more taxa are considered (e.g., the

position of Ctenophora in [2]). To test this

hypothesis, we reduced the taxon sampling

of [3] to match as closely as possible the

sampling of Figure 2. Even though

sequences and inference methods are

exactly as in [3], the support for deep

animal relationships decreases drastically

(Figure 3B). While the monophyly of each

of the Cnidaria (94%), Coelenterata

(70%), and Demospongiae + Hexactinel-

lida (86%) still receive some support,

remaining relationships are unresolved

(BS,60%); in particular, Porifera and

Eumetazoa are not recovered. These

results corroborate the hypothesis that

the use of a limited number of species

generates enough non-phylogenetic signal

to swamp most of the faint genuine

phylogenetic signal present in this part of

the animal phylogeny (owing to short

internal branches and heterogeneous rates

among species).

However, taxon sampling is not simply

a matter of number of species [35–37]. In

particular, the inclusion of both slowly

evolving species and closely related out-

groups (e.g., choanoflagellates for animals;

see [3] and Text S1) is often of prime

importance. This point is well illustrated

by a reanalysis of the original alignments

of Schierwater et al. in which we elimi-

nated the most distant outgroups. When

rooting exclusively with choanoflagellates,

the bootstrap support for a position of

Porifera as the sister group to remaining

animals rises to 80% (Figure S13). Al-

though discarding very distant outgroups

(e.g., Bacteria) undoubtedly improves ac-

curacy, the effect of including moderately

distant outgroups (e.g., Fungi) in addition

to close outgroups (e.g., choanoflagellates)

is more difficult to assess. Eventually, it will

depend on the relative influence of

introducing a very long branch (the distant

outgroup) and breaking up an already

existing long branch (the close outgroup).

Even if further studies are needed to clarify

this point, an effort to increase the taxon

sampling of the close outgroup should help

to resolve deep animal relationships.

Finally, phylogenomic datasets, espe-

cially when based on expressed sequence

tag (EST) data, are frequently character-

ized by incomplete gene coverage for some

taxa. Yet, there have been few attempts to

determine whether missing data per se can

cause errors in tree reconstruction [36,38–

42] and how they may interfere with other

aspects of phylogenetic inference. In

particular, it is not known whether a

smaller, but complete, alignment of tar-

geted genes (e.g., selectively amplified by

PCR) would yield a more accurate and

robust tree than a large, but incomplete,

alignment of highly expressed genes (ob-

tained by EST sequencing). These ques-

tions can and should be better assessed in

the near future.

Issues at the Level of Tree
Reconstruction Methods

To further explore the idea that the

paramount issue in phylogenomics pertains

to the reduction of non-phylogenetic signal

(more than the increase of phylogenetic

signal with datasets containing more and

more genes, especially in the short run), we

Box 3. Quality Control of Phylogenomic Datasets

Despite the great progress in software development [19–22,52–54], our nine
years of experience with large-scale multigene analyses [55] leads us to conclude
that computer-assisted manual expertise is not yet dispensable. In particular
when processing EST data, two issues are still challenging to handle by
automation: (i) the non-homology of short sequence stretches due to frameshifts
and point mutations and (ii) the non-orthology of one or more genes with similar
sequence for some species, because of paralogy or xenology, along with
taxonomic misidentifications and library contaminations (e.g., by parasites such as
platyhelminthes). An important limitation of automated methods for checking
single-gene alignments for orthology prior to concatenation is the limited
amount of sequence information available in a single gene, which often makes
current statistical analyses impractical. If the threshold used is stringent, almost
every sequence will fail the test, whereas a loose threshold will lead to numerous
false positives. Manual verification, through visual inspection of alignments and
phylogenies, can to a large extent compensate for this lack of statistical power if a
large number of species (much more than those eventually included in the final
analysis) is taken into account. First, as conserved positions are clearly identified,
both translational frameshifts (leading to stretches of amino acids highly different
from the consensus, which are mostly found at EST extremities) and local
sequencing errors (visible as unmatched amino acids at highly conserved
positions) stand out. Based on manual analysis, we estimate that approximately
4,800 amino acids (0.66% of the complete alignment) were erroneous in the Dunn
et al. dataset [2] because of frameshifts and local sequencing errors (including
incorrect translation owing to a mistake in the specification of the genetic code
for ambulacrarian mitochondria; see Table S2). Second, xenology, contaminations,
and misidentification can be efficiently detected when individual alignments
encompass a broad taxonomic diversity, as such diversity is much more likely to
find a close relative of the donor species. For instance, in the Dunn et al. dataset
[2], one acoel species, the marine flatworm Neochildia fusca, was contaminated by
microsporidia (see Table S2). Since original alignments lacked microsporidial
sequences, the contamination was overlooked and acoel sequences were simply
considered as extremely divergent. Similarly, hidden paralogy is easier to detect
with numerous species on hand (and with deeper sequencing of each of them),
because they increase the chance of finding a species that has kept both copies.
Interestingly, much more serious errors (including the use of paralogous, rather
than orthologous, copies, and taxonomic misidentification; see Figures S1, S2, S3,
S4, S5, S6, S7, S8, S9) were identified in the manually assembled Schierwater et al.
dataset [4] than in the automatically assembled Dunn et al. dataset [2] (compare
Tables S1 and S2). Manual assessment of the quality of primary data is particularly
tedious and time-consuming, as well as error-prone. That is why automated
approaches featuring refined statistics (e.g., hidden Markov models detecting
frameshifts) are strongly needed to both speed up and improve the construction
of phylogenomic datasets. Finally, it should be noted that missing data (i.e.,
incomplete sequences), which are on the rise in recent large-scale analyses (e.g.,
55.5% of the characters in [2] and 81% in [46]), constitute an additional
unpredictable issue, as they might further erode statistical power and sometimes
enhance tree reconstruction artifacts [38,42] (see Text S1 and Figure S11).
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now turn to the selection of the model of

sequence evolution. Since their origin [43],

the main objective of these models has been

to efficiently detect multiple substitutions

(Box 4). We reanalyzed the dataset of [3]

with a less accurate model, i.e., the site-

homogeneous WAG+F+C model [44] used

in [4] instead of the site-heterogeneous

CAT+C model [45] used in the original

study [3] (Figure 4A). In the WAG+F+C
tree (Figure 4B), not only does resolution

decrease (see BS of 43%, 45%, or 55%), but

also the fast-evolving ctenophores now

emerge at the base of all animals with

strong support (BS = 98%), exactly as

expected for a LBA artifact due to model

mis-specifications. This indicates that when

the less appropriate WAG+F+C model is

used, multiple substitutions are so poorly

inferred that branch lengths are miscalcu-

lated (i.e., non-phylogenetic signal has

overwhelmed phylogenetic signal).

In summary, the incongruence at the

base of the animal tree observed in recent

phylogenomic studies [2–4] can be ex-

plained by (i) a limited amount of phyloge-

netic signal, reflected in the short internal

branches, and (ii) a profusion of confound-

ing non-phylogenetic signal in certain cases.

Since genuine phylogenetic signal is similar

in all three analyses (i.e., internal branch

lengths are identical and datasets are of

similar size), conflicts are due to variations

in the level of non-phylogenetic signal—

depending on the quantity of non-ortholo-

gous sequences included, the number of

species considered, and the model of

sequence evolution selected. Ultimately,

the ratio of phylogenetic to non-phyloge-

netic signal will determine the outcome: (i)

when the phylogenetic signal is strong

(sufficiently long internal branches), phylo-

genomics is always able to recover the

correct topology, as found in the three

studies [2–4] for outgroup and bilaterian

phylogenies; (ii) when both signals are

weak, results are statistically non-signifi-

cant, as is often observed for deep animal

relationships; and (iii) when the phyloge-

netic signal is weak (short internal branches)

and the non-phylogenetic signal is strong

(e.g., scarce taxon sampling), an artifactual

topology is robustly inferred, such as the

monophyly of ‘‘diploblasts’’ [4] or the basal

Figure 2. Analysis of the revised Schierwater et al. dataset. (A) Scheme of the original tree [4]. (B) Scheme of the tree obtained with the
revised dataset. Both trees were inferred using exactly the same probabilistic method and model (i.e., using RAxML [75] with a GTR+C model for
nucleotide sequences and a LG+F+C model for protein sequences). Numbers in the triangles indicate the number of species used for the
corresponding clade. Bullets denote maximum bootstrap support values (BS = 100%); lower values are given. In the revised dataset, numerous
discrepancies were corrected (Table S1), and a few genes were discarded because of dubious orthology; 14,112 unambiguously aligned positions
were retained. Furthermore, the erroneous use of mitochondrial sequences of demosponge origin to represent both hexactinellids and calcareans
(Figure S9) in the original study [4] drastically—yet probably artifactually—strengthened the support for the monophyly of sponges (BS = 100%; [A]),
whereas it appeared much weaker in our reanalysis (BS = 36%; [B]), in line with previous studies [24,26–28] that failed to find significant support for or
against sponge monophyly (but see [3]). See Figure S10 for the complete tree obtained with the revised dataset.
doi:10.1371/journal.pbio.1000602.g002
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emergence of ctenophores (Figure 4B) (see

also [2,32,46]).

Issues at the Level of Gene
Sampling

Last but not least, it should be noted that

not all genes contain the same potential

amount of non-phylogenetic signal. De-

pending on both functional constraints and

evolutionary trajectory, different genes can

include positions subject to different ranges

of multiple substitutions, i.e., they may

display variable levels of saturation. To

estimate the saturation in the three datasets

[2–4], we used the comparison of patristic

and uncorrected distances [47]. As shown

by the slope of the regression line (data

without any saturation have slope = 1; see

[12]), the three datasets (Figure 5) are

different, with that of Schierwater et al.

being the most saturated (slope = 0.38) and

that of Philippe et al. the least affected by

multiple substitutions (slope = 0.53). This

uneven amount of non-phylogenetic signal

explains in part the differences observed in

the three studies, but is difficult to separate

from other factors. The phylogeny of

Figure 1C, with the monophyly of each of

Coelenterata (cnidarians+ctenophores) and

Figure 3. Reanalysis of the Philippe et al. dataset with a reduced taxon sampling. (A) Scheme of the original tree [3]. (B) Scheme of the tree
obtained after reduction of the taxon sampling. Both trees were inferred using exactly the same probabilistic method and model (i.e., PhyloBayes
using the CAT+C model [76]). Numbers in the triangles indicate the number of species used for the corresponding clade. Bullets denote maximum
bootstrap support values (BS = 100%); lower values are given. See Figure S12 for the complete tree obtained after reduction of the taxon sampling.
doi:10.1371/journal.pbio.1000602.g003

Box 4. Improving Phylogenetic Inference Methods

There is broad consensus on the necessity of using probabilistic methods in
phylogenetic inference. Development of more accurate models of sequence
evolution is central to the improvement of these methods. This generally implies
more complex models, which are expected to come with increased computa-
tional load. Hence, in-depth analyses of datasets that are rich in both genes and
species with such models can become prohibitive [46]. Consequently, some
promising approaches, e.g., accounting for three-dimensional structure of
proteins [56,57] or performing joint alignment and phylogeny [58,59], will
probably stay out of reach for years. Fortunately, numerous recent algorithmic
developments [60–62] significantly speed up phylogenetic computations, thus
paving the way for model improvements. One generally considers that models
should be biologically sound. Although biological realism is particularly important
for understanding molecular evolution, it is less central for phylogenetic
inference, where improving detection of multiple substitutions should be the
top priority. As a result, models that more accurately distinguish a synapomorphy
from a convergence greatly improve phylogenetic accuracy. Briefly, major steps
forward were the modeling of heterogeneity of rate across species [63],
heterogeneity of rate across substitutions [64,65], heterogeneity of nucleotide/
amino acid composition across species [66,67], heterogeneity of rate across sites
[68], and heterogeneity of the substitution process across sites [45]. In contrast,
some other improvements, e.g., to handle heterotachy (i.e., heterogeneity of rate
over time), had limited effects on phylogenetic reconstruction [69]; heterogeneity
of rates across genes, handled by separate models [50], also has limited impact
([70], but see [71]). Future progress is expected (i) from the combination of
various existing models [72], (ii) from the handling of other complexities, such as
the heterogeneity of the substitution process over time, and (iii) from the
handling of incomplete lineage sorting [11,73].
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Eumetazoa (all animals except sponges and

placozoans), could be considered as the

working hypothesis, because Philippe et al.

[3] strived to minimize all three sources of

non-phylogenetic signal (through the use of

weakly saturated genes, a large number of

species, and a complex model of sequence

evolution). Nevertheless, the scarcity of

phylogenetic signal shown here argues

strongly for additional studies to confidently

resolve the relationships among non-bila-

terian animals.

Conclusion

Contrary to common belief, some

degree of conflict has to be expected when

applying phylogenomics to difficult phylo-

genetic questions, because of the preva-

Figure 4. Reanalysis of the Philippe et al. dataset with a less complex model. (A) Scheme of the original tree [3] obtained with the CAT+C
model. (B) Scheme of the tree obtained with the less complex WAG+F+C model. Both trees were inferred using exactly the same dataset. The
WAG+F+C model has a less good fit to this alignment than the CAT+C model [3]. Numbers in the triangles indicate the number of species used for
the corresponding clade. Bullets denote maximum bootstrap support values (BS = 100%); lower values are given. See Figure S14 for the complete tree
obtained with the less complex WAG+F+C model.
doi:10.1371/journal.pbio.1000602.g004

Figure 5. Saturation levels of datasets from Schierwater et al., Dunn et al., and Philippe et al. (A) Schierwater et al. [4] dataset. (B) Dunn
et al. [2] dataset. (C) Philippe et al. [3] dataset. The revised alignments from Schierwater et al. and Dunn et al. were used (available as Datasets S1 and
S2; see Text S1). The level of saturation was estimated for each dataset by computing the slope of the regression line of patristic distances (y-axis)
versus uncorrected distances (x-axis), as previously described [12]. Patristic distances between two species were computed from branch lengths of
the best maximum likelihood tree (using a GTR+C model for nucleotide sequences and a LG+F+C model for protein sequences).
doi:10.1371/journal.pbio.1000602.g005
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lence of non-phylogenetic signal. Conse-

quently, we stress the necessity of reducing

its impact. Since taxon and gene sampling

is being rapidly improved by the relentless

progress in sequencing technology (even if

obtaining well preserved and correctly

identified specimens remains the limiting

factor for several key taxa), full achieve-

ment of the ultimate goal of phyloge-

nomics—i.e., accurate resolution of the

Tree of Life—will primarily hinge on

better procedures for the selection of

orthologous and least saturated genes as

well as on improved models of sequence

evolution. In summary, while we certainly

encourage the inclusion of neglected

groups of organisms in large-scale se-

quencing studies (e.g., [2,3,46,48]), we

consider at least as important that phylo-

geneticists engage in theoretical and

bioinformatics developments that keep

pace with sequencing technology to over-

come these serious bottlenecks. This is

essential to ensure that lessons learned

from classical and molecular systematics

are not forgotten in the phylogenomic era.
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