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Comments on “Leave-Cluster-Out Cross-Validation Is Appropriate for
Scoring Functions Derived from Diverse Protein Data Sets”:
Significance for the Validation of Scoring Functions

Recently, Kramer and Gedeck published an article1 in this
journal which referred extensively to our previous work on

the scoring function RF-Score.2 This machine learning-based
scoring function is designed to predict the binding affinities of
protein�ligand complexes and thus can also be used to rescore
poses as generated by in silico docking techniques (however this
first version of RF-Score is not suitable to guide pose generation).
Whereas other scoring functions assume a particular mathematical
relationship between the atomic-level description of the protein�
ligand complex and various theory inspired contributions to
binding free energy, we used random forest machine learning
instead to implicitly infer this relationship in an entirely data-
driven manner. Such a relationship typically takes the form of a
sum of physicochemical contributions to binding in the case of
empirical scoring functions or a reverse Boltzmann methodology
in the case of knowledge-based scoring functions. Our uncon-
strained approach was likely to result in performance improve-
ment, as it is well-known3 that the strong assumption of a
predetermined functional form for a scoring function introduces
an error in addition to that inherent in all feasible methodologies
for high-throughput binding affinity estimation (such inherent
sources of error include the coarse description of protein flexibility
and implicit treatment of solvent). Indeed, scoring functions using
highly flexible machine learning for nonlinear regression are
already showing2,4,5 substantial performance improvements in
comparison to established scoring functions. RF-Score, which is
the only stand-alone open source scoring function we are aware of,
is available to all6 without charge on a Creative Commons license,7

requiring only the free statistical software suite R,8 a C language
compiler, and the PDBbind9,10 complexes to be used for training
(step-by-step instructions are included in the Supporting Informa-
tion in our article).2 Our intention on releasing the RF-Score
software was to facilitate the use, analysis, and future development
of machine learning-based scoring functions.
Kramer and Gedeck explained that their interest in RF-Score

was due to the following facts: It outperformed all other standard
scoring functions on the 2007 PDBbind core set benchmark
introduced by Cheng et al.;11 it represents an entirely new class
of scoring functions; and it was calibrated on the largest set of
complexes used to date for this purpose. When validating RF-
Score, we followed the careful validation protocol used by Cheng
et al. on a widely representative set of scoring functions, using the
2007 PDBbind core data set as the test set (a total of 195
complexes). The training set, used to calibrate RF-Score, consists
of the 1105 protein�ligand complexes belonging to the PDBbind
refined set that are not part of the core (test) set. It is worth noting
that this type of refined set partitions is common in the literature
(see for instance models I and V in a recent study4 by Breneman
and co-workers in addition to X-Score::HMScore v1.3 in Cheng
et al. and RF-Score in our study). A consequence of the experi-
mental design is that the proportion of complexes in the test set

with training complexes belonging to the same sequence-derived
cluster (loosely speaking, protein family) will be higher than that
occurring in a random split of the refined set.
Kramer and Gedeck’s contribution is centered on a discussion

of suitable validation methodologies for generic scoring func-
tions, such as RF-Score and also those analyzed by Cheng et al.
using the PDBbind benchmark. The thesis of these authors
appears to be that “it is necessary to employ . . . leave-cluster-out
cross-validation”.1 This is a cross-validation procedure, leave-
cluster-out cross-validation (LCOCV), in which for each cluster,
the data set is partitioned in such a way that the model on which
any given instance is tested has been trained on data that excludes
all members of the same cluster, and thereafter model perfor-
mance is averaged across the considered training/test partitions.
Much of the thrust of their work is to try to deconvolute the part
of the performance of RF-Score that comes from identifying
features common to a sequence-derived cluster from that part
that is learned from other training complexes. This is an inter-
esting hypothetical exercise suggesting that a substantial part of
RF-Score’s predictive power comes from cluster-specific infor-
mation, although it is clear from the results that this model also
exploits the information contained in other instances. Indeed,
their Table 2 shows that in 50/62 cases, RF-Score either gets the
within-cluster order of the three test binding affinities exactly
correct (30 times) or else just flips the median affinity rank with
one of the others.
Remarkably, RF-Score was the only scoring function used in

this work. The lack of any performance results on other functions
means that Kramer and Gedeck’s study in itself tells us nothing
about how RF-Score compares with other methods for binding
affinity prediction. We agree that LCOCV is a more exacting test,
against which one would expect a scoring function probably to
generate a higher (worse) error betweenmeasured and predicted
binding affinity, as quantified by root-mean-squared error
(RMSE) or an almost identical standard deviation and by a
lower (worse) Pearson correlation coefficient R. Table 7 in that
study shows that the deterioration in RMSE on moving from
PDBbind core validation to LCOCV is actually insignificant,
from 1.58 to 1.60 log units, though R drops significantly from
0.77 to 0.46. However, there is no reason to believe that RF-Score
should do relatively better or worse than any other scoring
function on LCOCV versus PDBbind core validation. In other
words, alternative scoring functions could perform worse on
LCOCV if only these have been tested. In fact, when we
compared the best performing scoring function in the Cheng
et al. study (X-Score::HMScore) against RF-Score using exactly
the same training and test sets, it was observed that RF-Score
obtained a substantially better correlation (R = 0.78 versus 0.65)
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and standard deviation (SD = 1.58 versus 1.83 log units) than
X-Score::HMScore. In order to investigate whether this training/
test split was particularly advantageous for both scoring func-
tions, we also generated 25 additional RF-Score models based on
random nonoverlapping partitions and observed a median
correlation coefficient of R = 0.74 (a difference of +0.04, i.e.,
RF-Score does somewhat better than the median on this metric)
and amedian SD= 1.51 (a difference of +0.07, i.e., RF-Score does
somewhat worse than the median on this metric). These experi-
ments demonstrate that there is a minor difference in RF-Score
performance between PDBbind core and more realistic random
partitions (see last paragraph of Section 4 and Appendix A4 in
our article2 for full details of these experiments, which are here
summarized in Figure 1). It is unclear why Kramer and Gedeck
did not mention either of these rigorous validations, which are
entirely relevant to the aim of their study.
Most importantly, we consider that LCOCV is ultimately of

little practical value. Indeed, the ultimate goal of a validation
strategy is to simulate with sufficient accuracy the difficulties
that one would encounter when applying a methodology in a
real-world scenario. So, in the context of the proposed valida-
tion, this question translates to whether the protein target
against which we want to screen shows high sequence similarity
to any of the high-quality structures deposited in the PDB
(please note that the PDBbind refined set is the result of a
nonredundant sampling of the entire PDB). Overington et al.12

investigated this question and concluded that over 92% (300)
of all existing drug targets had sufficient sequence similarity to
indicate that they share a fold with known proteins in the PDB.
Another example is in the 1741 PDBbind 2009 refined set
complexes used by Kramer and Gedeck’s study,1 where as many
as 82% (1420) of the complexes contain proteins with BLAST
sequence similarity above 90% to proteins of other complexes
in the set. Therefore, since a target protein that does not have
high sequence similarity to any other protein in a diverse and
large training set constitutes an uncommon scenario, LCOCV
will not be appropriate in most cases of interest, and certainly it
is not necessary. LCOCV would, however, be suitable for
estimating the performance that a generic scoring function
would achieve on a truly new target protein that does not
belong to a cluster represented by any of the proteins in the

training set. From a practical standpoint, one always will be able
to calculate the sequence similarity between the target protein
and those in the training set to establish which pre-existing
validation is more relevant for a particular case.
As extensively discussed in our paper, we believe that the

quality of RF-Score is due to the circumvention of error-prone
modeling assumptions and that the component from prior
familiarity with other members of the same cluster is at a level
typical in computational drug design. Any learning of cluster
membership is indirect rather than explicit. There is nothing
wrong with learning residue-level cluster membership as a
byproduct of learning how the binding strength is linked to the
atomic-level structure of the complex. In fact, such a correlation
between sequence and atomic-level properties is to be expected,
as the spatial arrangement of atoms in a binding site is a
consequence of the characteristic folding of that particular
sequence of residues. Therefore, removing from the training
set those complexes with proteins that belong to the same cluster
as the target protein means that we are depriving the scoring
function from themost relevant data for calibration without good
reason. Since the only published comparison of which we are
aware was our own, and it is clear that RF-Score performed very
well in that study, we encourage the community to carry out
comparisons of RF-Score against alternative scoring functions.
We and others4,11 believe that a fair comparison requires a
common benchmark for all tested scoring functions. Borrowing
the words4 of Breneman and co-workers on a recent study
presenting a support vector regression-based scoring function:
“Rigorous quantitative comparison between two empirical scor-
ing functions requires that not only the test set but also the
training set be identical. This is because the choice of training sets
can have a great impact on the performance of empirical scoring
functions.” Furthermore, as we did for the validation of RF-Score,
we recommend using a pre-existing benchmark where other
scoring functions had previously been tested, so as to ensure the
optimal application of such functions by their authors as well as
to avoid the danger of constructing a benchmark complementary
to the presented scoring function. With large data sets and
performance results for the PDBbind benchmark being publicly
and freely available, we cannot think of a valid reason for not
including a comparison of scoring functions using the same

Figure 1. RF-Score performance against that of 16 established scoring functions on the pre-existing PDBbind benchmark (full details in the original
publication).2 On the left of each plot, the “core” column shows the performance of each tested scoring function on the same independent test set
(PDBbind 2007 core set). The “�” sign marks the performance of RF-Score, which is substantially better than that of the rest of functions marked by�
signs in each of the three performance measures (Pearson correlation coefficient, R, Spearman rank-correlation, Rs, and standard deviation between
predicted andmeasured binding affinity in log units, SD). On the right of each plot, the “random” column shows a boxplot summarizing the performance
of RF-Score using 25 randomly generated training/test partitions with the same sizes as the core partition (1105/195). The experiment demonstrates
that there is a minor difference in RF-Score performance between PDBbind core and more realistic random partitions.
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training and test sets in addition to the performance of the
version preferred by the authors.
To sum up, we consider that Kramer and Gedeck’s proposed

validation protocol is a valuable contribution that would be useful
for predicting the performance of a scoring function on a
minority of target proteins but would not be a reliable perfor-
mance indicator for most cases of interest. Regarding RF-Score
itself, we have argued here why there is nothing in the composi-
tion of the training or test sets that explains why it performs so
well compared to other scoring functions, since the only real
difference between RF-Score and standard scoring functions is
that the former makes absolutely no assumption about the
relationship between structure and binding measurements. Fi-
nally, we fully agree with these authors that the expertise that
chemoinformatics professionals have on the use of machine
learning to build quantitative structure�activity relationship
(QSAR) models is now fully transferable to scoring function
development and that such transfer would certainly be valuable,
whether this entails using widely tested machine learning-based
regression methodologies or studying the applicability of a rich
body of work on QSARmodel validation techniques.13�17 In our
view, the same applies to computationally minded physical
chemists and structural biologists with expertise in this area.
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