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The Drug Discovery Process

• Developing new drug = average US$4 billion and 15 years
http://www.forbes.com/sites/matthewherper/2012/02/10/the-truly-staggering-cost-of-inventing-new-drugs/

• While clinical trials are the most expensive stages, the
research influencing approval the most at early stages:
• Finding a target linked to the disease and a molecule modulating

the function of target without trigering harmful side effects.

• Goal: finding drug leads for new targets (challenging)

Payne et al. (2007) Nat Rev. Drug Disc. 6:29

Payne et al. (2007) Nat Rev. Drug Disc. 6:29
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Virtual Screening: Why?

• HTS: Main strategy for identifying active molecules (hits)
by wet-lab testing a library of molecules against a target.

• Computational methods (Virtual Screening) are needed:
• HTS is slow: HTS of corporate collections many months
• HTS is expensive: Average cost US$1M per screen.Payne et al. 2007

• Growing # of research targets no HTS until target validation

• Limited diversity in HTS:
HTS 106 cpds...
but 1060 small molecules!
(Dobson 2004 Nature)

• Target really undruggable?



Drug Design: goals

• Identifying active molecules among a large number of
inactive molecules (i.e. extremely weak binders).

• Drugs must selectively bind to their intended target, as
binding to other proteins may cause harmful side-effects

• Optimising selectivity: e.g. identify hits that occupy a
subpocket that is not in related proteins w/≠ functions

• Increasing potency of the drug lead: predicting which
analogues are more potent.

• How well these goals are met depend on the accuracy
of structure-based tools for the considered target.
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Docking

• Docking = Pose generation + Scoring
• Pose generation: estimating the conformation and orientation of

the ligand as bound to the target.
• Scoring: predicting how strongly the ligand binds to the target.

• Many relatively accurate algorithms for pose generation,
but imperfections of scoring functions continue to be the
major limiting factor for the reliability of docking.
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• If X-ray structure of the target
is available  Docking:
• predicting whether and how a

molecule binds to the target.



• Force Field-based SFs (e.g. DOCK score)

• Empirical SFs (e.g. X-Score)

• Knowledge-based SFs (e.g. PMF)

• SFs are trained on pK data usually through MLR:
• FF (Aij, Bij), Emp(w0,…,w4) and sometimes KB (            )

Scoring Functions for Docking: functional forms
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Scoring Functions for Docking: limitations

• Two major sources of error affecting all SFs:
1. Limited description of protein flexibility.
2. Implicit treatment of solvent.

• This is necessary to make SFs sufficiently fast.
• 3rd source of error has received little attention so far:
• Conventional scoring functions assume a theory-inspired

predetermined functional form for the relationship between:
• the structure-based description of the p-l complex
• and its measured/predicted binding affinity

• Problem: difficulty of explicitly modelling the various
contributions of intermolecular interactions to binding affinity.

• Also, SFs use an additive functional form, but this has been
specificly shown to be suboptimal (Kinnings et al. 2011 JCIM).
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non-parametric machine learning can be used to implicitly
capture the functional form (data-driven, not knowledge-based)

A Machine Learning Approach
2010



A machine learning approach

• Main idea: a priori assumptions about the functional
form introduces modelling error no asumptions!

• reconstruct the physics of the problem implicitly in an
entirely data-driven manner using non-parametric ML.

• Random Forest (Breiman, 2001) to learn how the
atomic-level description of the complex relates to pK:

• Random Forest (RF): a large ensemble of diverse DTs.

• Decision Tree (DT): recursive partition of descriptor space s.t.
training error is minimal within each terminal node.

• But how do we characterise a protein-ligand complex as
set of numerical descriptors (features)?
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Characterising the protein-ligand complex

Machine learning approaches to predicting protein-ligand bindingCambridge Computational
Biology Institute, Feb 2013

12

pKd/i C.C … C.Cl … C.I N.C … I.I PDB ID

5.70 95 30 0 73 0 2p33

+1
binding affinitybinding affinity features or

descriptors
features or
descriptors



PDBbind benchmark

• De facto standard for SFs benchmarking:
Cheng, T., Li, X., Li, Y., Liu, Z. & Wang, R. (2009) JCIM 49, 1079-1093

• Refined set 1300 manually curated protein-ligand
complexes with measured binding affinity ( diverse):

• Benchmark: 16 state-of-the-art SFs test set error

• RF-Score vs 16 SFs on test set error, but:
• Other SFs have an undisclosed number of cmpxes in common!
• RF-Score & X-Score (best) non-overlapping training-test sets.
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Training and testing machine learning SFs
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pKd/i C.C – C.I N.C – I.I PDB

0.49 1254 – 0 166 – 0 1w8l

– – – – – – – –

13.00 2324 – 0 919 – 0 2ada

pKd/i C.C – C.I N.C – I.I PDB

1.40 858 – 0 0 – 0 2hdq

– – – – – – – –

13.96 4476 – 0 283 – 0 7cpa

Random Forest training
(descriptor selection, model selection)

RF-Score
(description and training choices)

Training set (1105 complexes) Test set (195 complexes)

1105

195

Generation of descriptors (dcutoff, binning, interatomic types)

1w8l
pKi=0.49

1gu1
pKi=4.52

2ada
pKi=13

2hdq
pKi=1.4

1e66
pKi=9.89

7cpa
pKi=13.96



RF-Score‘s performance
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Rp=0.776
SD=1.58
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Careful with biases when comparing SFs!

If we allow 65 cpxes overlap
 Rp=0.827

No overlap (unlike other SFs
but X-Score) Rp=0.776
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• In predicting pKd/i, nonlinear combination of energy terms
performs better than the linear regression of energy terms

• Target-specific SF by only considering complexes of anti-
TB enzyme InhA (SVR on 80 structures with IC50 values)

• SVM classifier better than SVR at retrospective Virtual
Screening, partly because negative data in training set.

2011
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• RF-Score is now integrated in istar, a web platform for
large-scale online protein-ligand docking

• Multi-threaded Idock on >12M commercially-available
compounds docking poses re-scored with RF-Score.

• Together with Hongjian Li, Kwong-Sak Leung, Man-Hon
Wong (Chinese University of Hong Kong)

2013

http://istar.cse.cuhk.edu.hk/idock/
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• One of the two previous non-parametric ML to build SFs.
≠ from RF-Score: target-specific & modelling assumptions

• Very useful for lead optimisation: Support Vector Inductive
Logic Programming (SVILP) predicts binding + rules

• Which protein-ligand interatomic features are associated
to potent binding? e.g. O.2_C.2, N.am, 51, 2.8, 0.5

2007
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2012

• First prospective VS application of RF-Score to two
antibacterial targets. Hierarchical, screening 9M cpds.

• Outstanding hit rates of ~ 60% with Ki  250 M 100
new and structurally diverse actives (£5,000 cost).
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One known scaffolds for Type II DHQase

M. Tuberculosis

Ki

Computational Drug DesignSchool of Computing,
University of Kent, Nov 2012
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New active scaffolds for Type II DHQase

M. Tuberculosis

Ki

Computational Drug DesignSchool of Computing,
University of Kent, Nov 2012
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• Not a MLSF predicting binding affinity, ML classifier to
discriminate between actives and inactives of a target.

• Interesting: uses docking poses of active and inactives to
supplement ligand-bound crystal structures of the target.

• SVM, RF and NNs. Five target-specific classifiers.
Implementations generally outperform GlideScore::SP

2010
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Future prospects – reviews highlighting MLSFs

• 2010 Xiaoqin Zou & co-workers (U. of Missouri, USA):
• MLSFs shown to be able to exploit very large training sets

• 2012 Stephen Bryant & co-workers (NCBI, USA):
• RF-Score strikingly outperforms all 16 state-of-the-art traditional SFs.
• MLSFs avoid explicit error-prone modelling of solvation & entropy.

• 2012 Christoph Sotriffer (U. of Würzburg, Germany):
• MLSFs are becoming increasingly popular.

• 2012 Russ Altman & co-workers (Stanford U., USA):
• MLSFs improve rank-ordering of series of related molecules.
• As structural dbs grow, MLSFs are expected to further improve.

• 2013 Chung-Hang Leung & co-workers (U. of Macau, China):
• MLSFs are attracting increasing attention in estimation of binding affinity
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