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The Drug Discovery Process
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Years Payne et al. (2007) Nat Rev. Drug Disc. 6:29

- Developing new drug = average US$4 billion and 15 years

http://www.forbes.com/sites/matthewherper/2012/02/10/the-truly-staggering-cost-of-inventing-new-drugs/

* While clinical trials are the most expensive stages, the
research influencing approval the most at early stages:

 Finding a target linked to the disease and a molecule modulating
the function of target without trigering harmful side effects.

« Goal: finding drug leads for new targets (challenging)
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Virtual Screening: Why?

« HTS: Main strategy for identifying active molecules (hits)
by wet-lab testing a library of molecules against a target.

« Computational methods (Virtual Screening) are needed:
« HTS is slow: HTS of corporate collections = many months
« HTS is expensive: Average cost US$1M per screen.Payne etal. 2007
Growing # of research targets = no HTS until target validation

- Limited diversity in HTS: | Q
HTS 10° cpds...

but 10%° small molecules! ‘@
(Dobson 2004 Nature)

« Target really undruggable?

VS
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Drug Design: goals

* ldentifying active molecules among a large number of
inactive molecules (i.e. extremely weak binders).

* Drugs must selectively bind to their intended target, as
binding to other proteins may cause harmful side-effects

« Optimising selectivity: e.g. identify hits that occupy a
subpocket that is not in related proteins w/# functions

 Increasing potency of the drug lead: predicting which
analogues are more potent.

* How well these goals are met depend on the accuracy
of structure-based tools for the considered target.
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Docking

 If X-ray structure of the target
Is available - Docking:

e predicting whether and how a
molecule binds to the target.

* Docking = Pose generation + Scoring

* Pose generation: estimating the conformation and orientation of
the ligand as bound to the target.

« Scoring: predicting how strongly the ligand binds to the target.

* Many relatively accurate algorithms for pose generation,
but imperfections of scoring functions continue to be the
major limiting factor for the reliability of docking.
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Scoring Functions for Docking: functional forms

Force Field-based SFs (e.g. DOCK score)

Eping = Z(———+3320 14, ]

protein ligand i g(dﬂ" ) & d":f

Empirical SFs (e.g. X-Score)

AGbiﬂd :Wﬂ‘l‘wl AG ‘i‘Wz AG ‘|"W3 AG +W4_ﬁG

vdwW h—bond rotor hydrophobic

* Knowledge-based SFs (e.g. PMF)
PMF =3 4(d,) 4,(a,)= len{fm o ()w}

prot lig

« SFs are trained on pK data usually through MLR:
» FF (Ai, Bij), Emp(wo,...,ws) and sometimes KB ( pU. s )
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Scoring Functions for Docking: limitations

« Two major sources of error affecting all SFs:
1. Limited description of protein flexibility.
2. Implicit treatment of solvent.

* This is necessary to make SFs sufficiently fast.

e 3 source of error has received little attention so far:

« Conventional scoring functions assume a theory-inspired
predetermined functional form for the relationship between:

* the structure-based description of the p-l complex
* and its measured/predicted binding affinity

* Problem: difficulty of explicitly modelling the various
contributions of intermolecular interactions to binding affinity.

* Also, SFs use an additive functional form, but this has been
specificly shown to be suboptimal (Kinnings et al. 2011 JCIM).

9 Cambridge Computational Machine learning approaches to predicting protein-ligand binding EMBL-EBI

Biology Institute, Feb 2013




10

2010
A Machine Learning Approach

ORIGINAL PAPER i1 iossmionomatesiot 12

Structural bioinformatics Advance Access publication March 17, 2010

A machine learning approach to predicting protein-ligand binding
affinity with applications to molecular docking
Pedro J. Ballester’-*'T and John B. O. Mitchell®*

1Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW and 2Centre for Biomolecular Sciences, University of St Andrews, North Haugh,
St Andrews KY16 9ST, UK

Associate Editor: Burkhard Rost

non-parametric machine learning can be used to implicitly
capture the functional form (data-driven, not knowledge-based)
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A machine learning approach

- Main idea: a priori assumptions about the functional
form introduces modelling error = no asumptions!

 reconstruct the physics of the problem implicitly in an
entirely data-driven manner using non-parametric ML.

« Random Forest (Breiman, 2001) to learn how the
atomic-level description of the complex relates to pK:

« Random Forest (RF): a large ensemble of diverse DTs.

* Decision Tree (DT): recursive partition of descriptor space s.t.
training error is minimal within each terminal node.

- But how do we characterise a protein-ligand complex as
set of numerical descriptors (features)?
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Characterising the protein-ligand complex

= V N4

features or
descriptors

V/ e
Ke | cC | ... | cCl / .. cl | NC X \/ﬁ’DBID
570 @ 95 30° 0 73 0  2p33
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PDBbind benchmark
« De facto standard for SFs benchmarking:
Cheng, T., Li, X., Li, Y., Liu, Z. & Wang, R. (2009) JCIM 49, 1079-1093

* Refined set - 1300 manually curated protein-ligand
complexes with measured binding affinity (1 diverse):

1105

Training: D = {(y,,,v,i},-)}j:1 y;=-log K, B f=f(3))

TeSting: B = {(yj’fj)};}i)?mc <& D, = {( J(x;), f.f)}z-jf?ms
« Benchmark: 16 state-of-the-art SFs - test set error

 RF-Score vs 16 SFs on test set error, but:
e Other SFs have an undisclosed number of cmpxes in common!
 RF-Score & X-Score (best) non-overlapping training-test sets.
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Training and testing machine learning SFs

Training set (1105 complexes)

Test set (195 complexes)

Generation of descriptors (d_,..«, binning, interatomic types)

Pk CC - Cl NG - U PDB
0.49 1254 - 0 166 = 0 w8l

GoL1L

13.00 2324 - 0 919 - 0 2ada

Random Forest training
(descriptor selection, model selection)
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PKq CC - Cl NC - U PDB
1.40 858 - 0 0 - 0 2hdq

g6l

13.96 4476 - 0 283 - 0 7cpa

RF-Score
(description and training choices)
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RF-Score's performance

COMPARATIVE ASSESSMENT OF SCORING FUNCTIONS

J. Chem. Inf. Model., Vol. 49, No. 4, 2009 1087

R=0.77 on independent test set (195 complexes)
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Figure 6. Correlations between the experimentally measured binding constants (in —log Ky units) of the I95£mlein—ligand complexes in

the primary test set and the binding scores computed by (a) X-Score::HMScore (R = 0.644). (b) DrugScore

SYBYL::ChemScore (R = 0.555), and (d) DS::PLP1 (R = 0.545).

D PairSurf (R = 0.569), (c)

15 Cambridge Computational

Machine learning approaches to predicting protein-ligand binding
Biology Institute, Feb 2013

EMBL-EBI




16

Predicted binding affinity (RF-Score)

Careful with biases when comparing SFs!

R= 0.776 on independent test set ( 195 complexes) R= 0.827 on independent test set ( 195 complexes)
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No overlap (unlike other SFs
but X-Score) 2 Rp=0.776

If we allow 65 cpxes overlap
- Rp=0.827
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2011

JOURMAL OF

CHEMICAL INFORMATION
AND. MUIDELING pubs.acs.org/jcim

A Machine Learning-Based Method To Improve Docking Scoring
Functions and Its Application to Drug Repurposing

Sarah L. Kinnings,” Nina Liu," Peter ]. Tonge,” Richard M. Jackson," Lei Xie, "> and Philip E. Bourne*®
* In predicting pK,;, nonlinear combination of energy terms
performs better than the linear regression of energy terms

- Target-specific SF by only considering complexes of anti-
1B enzyme InhA (SVR on 80 structures with IC., values)

« SVM classifier better than SVR at retrospective Virtual
Screening, partly because negative data in training set.
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Phase 1 Phase 2 Wet lab 2013

http://istar.cse.cuhk.edu.hk/idock/

« RF-Score is now integrated in istar, a web platform for
large-scale online protein-ligand docking

« Multi-threaded Idock on >12M commercially-available
compounds > docking poses re-scored with RF-Score.

* Together with Hongjian Li, Kwong-Sak Leung, Man-Hon
Wong (Chinese University of Hong Kong)
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2007
*{_ InterScience’ PROTEINS

A general approach for developing
system-specific functions to score
protein-ligand docked complexes using
support vector inductive logic programming

Ata Amini," Paul J. Shrimpton,' Stephen H. Muggleton,” and Michael J. E. Sternberg'*

* One of the two previous non-parametric ML to build SFs.
# from RF-Score: target-specific & modelling assumptions

« Very useful for lead optimisation: Support Vector Inductive
Logic Programming (SVILP) predicts binding + rules

«  Which protein-ligand interatomic features are associated
to potent binding? e.g. 0.2 _C.2, N.am, 51, 2.8, 0.5
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JOURMNAL

o J. R. Soec. Interface (2012) 9, 3196-3207 201 2
I‘ ' t f Cooeente ik doi:10.1098 /rsif.2012.0569

n er ace oo Published online 29 August 2012

Hierarchical virtual screening for the
discovery of new molecular scaffolds in
antibacterial hit identification

Pedro J. Ballester!:*:f, Martina Mangold?f, Nigel I. HowardZ,
Richard L. Marchese Robinson?, Chris Abell?, Jochen Blumberger?
and John B. O. Mitchell?

« First prospective VS application of RF-Score to two
antibacterial targets. Hierarchical, screening 9M cpds.

« Qutstanding hit rates of ~ 60% with Ki <250 uM - 100
new and structurally diverse actives (£5,000 cost).

Overall Performance K;<100pM K. <250uM | (L1, L2 L3)[uM]
Against Mtb DHQase 35 (23.6%) 89 (60.1%) (23, 24, 40)
Against Scl DHQase 40 (27.0%) 91 (61.5%) (4, 21, 29)
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One known scaffolds for Type [l DHQase

M. Tuberculosis
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170 J. Chem. Inf. Model. 2010, 50, 170-185 2010

Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for in
Silico Screening

Tomohiro Sato,”* Teruki Honma,* and Shigeyuki Yokoyama* "+

Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and RIKEN Systems and Structural Biology Center, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

* Not a MLSF predicting binding affinity, ML classifier to
discriminate between actives and inactives of a target.

* Interesting: uses docking poses of active and inactives to
supplement ligand-bound crystal structures of the target.

«  SVM, RF and NNs. Five target-specific classifiers.
Implementations generally outperform GlideScore::SP
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Future prospects — reviews highlighting MLSFs

« 2010 Xiaogin Zou & co-workers (U. of Missouri, USA):

 MLSFs shown to be able to exploit very large training sets

« 2012 Stephen Bryant & co-workers (NCBI, USA):

* RF-Score strikingly outperforms all 16 state-of-the-art traditional SFs.
* MLSFs avoid explicit error-prone modelling of solvation & entropy.

« 2012 Christoph Sotriffer (U. of Wurzburg, Germany):

 MLSFs are becoming increasingly popular.

« 2012 Russ Altman & co-workers (Stanford U., USA):

 MLSFs improve rank-ordering of series of related molecules.
* As structural dbs grow, MLSFs are expected to further improve.

2013 Chung-Hang Leung & co-workers (U. of Macau, China):

* MLSFs are attracting increasing attention in estimation of binding affinity
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