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Spatial organisation of proteins according to their function plays an important role in the

specificity of their molecular interactions. Emerging proteomics methods seek to assign

proteins to sub-cellular locations by partial separation of organelles and computational

analysis of protein abundance distributions among partially separated fractions. Such

methods permit simultaneous analysis of unpurified organelles and promise proteome-wide

localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resol-

ving organelles that display similar behavior during a protocol designed to provide partial

enrichment represents a possible shortcoming. We employ the Localisation of Organelle

Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that

combining information from distinct separations of the same material can improve organelle

resolution and assignment of proteins to sub-cellular locations. Two previously published

experiments, whose distinct gradients are alone unable to fully resolve six known protei-

n–organelle groupings, are subjected to a rigorous analysis to assess protein–organelle

association via a contemporary pattern recognition algorithm. Upon straightforward combi-

nation of single-gradient data, we observe significant improvement in protein–organelle

association via both a non-linear support vector machine algorithm and partial least-squares

discriminant analysis. The outcome yields suggestions for further improvements to present

organelle proteomics platforms, and a robust analytical methodology via which to associate

proteins with sub-cellular organelles.
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The spatial organisation of proteins according to their

function and location is an important determinant of the

specificity of their molecular interactions [1]. Accordingly,

the determination of sub-cellular protein location(s) can

elucidate a protein’s role within the cell and refine knowl-

edge of cellular processes by pinpointing certain activities to

specific organelles [2]. Traditional methods to assign

proteins to sub-cellular locations are predominantly targeted

to a single protein of interest, for example, by creating a

GFP-tagged version or raising a specific antibody. Their low-

throughput nature has prevented such methods from

reaching genome-wide coverage, apart from in a very few
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cases where great effort resulted in highly resource-rich

studies on very specific systems [3, 4].

Conversely, organelle proteomics involves isolating an

organelle of interest and producing a catalogue of the

proteins present in that organelle, via some form of protein/

peptide separation followed by identification using MS.

Recent high-throughput methods (summarised in Fig. 1)

seek to obviate organelle purification. Quantitative proteo-

mics is employed to characterise the phenotypic distribution

of organelles among partially enriched fractions generated by

various separation technologies, thereby providing potential

to discriminate between genuine organelle residents and

contaminants. Some methods seek an enrichment of certain

organelle proteins within a small number of highly refined

fractions [5–7], but most do not achieve purification of any

organelle and may yield noisy data contaminated by false

assignments from aberrant purification.

Alternative methods assume that residents of a specific

organelle have a characteristic distribution pattern (or

profile) along the gradient (first proposed by de Duve [8]),

with location determined by matching the gradient profile of

a query protein to the profiles of proteins with known sub-

cellular location. For example, Protein Correlation Profiling

(Fig. 1A) employs label-free quantification methodologies to

determine distribution profiles across density gradients

[9–11]. Localisation of Organelle Proteins by Isotope

Tagging (LOPIT; Fig. 1A) seeks to improve quantification

via the use of isobaric stable isotope labelling technologies to

measure relative protein abundance across a density gradi-

ent [12–15]. Protein distributions are approximated by

measuring relative abundance among fractions via iTRAQ

quantification.

Both methods yield a multivariate vector (profile) that

approximates protein occupancy along a density gradient

designed to separate sub-cellular compartments. The collec-

tive isotopic abundance profiles of proteins with known

organelle membership within the cells under investigation

may be employed to create a phenotypic representation of

gradient occupancy for the proteins of a particular organelle.

Profile phenotypes may be employed subsequently to assign

organelle membership of other proteins present on the

gradient. The abstract nature of the experimental output

renders its use reliant on the secondary process of mapping

between the property measured (gradient occupancy) and the

knowledge desired (protein localisation). Thus, methods based

on the de Duve principle have an intimate relationship with

the field of pattern recognition.

To date, multivariate statistical techniques, including

PCA and partial least squares discriminant analysis

(PLSDA) [12, 15], have been employed to visualise LOPIT

output, cluster proteins according to their gradient profiles

and discriminate between the phenotypic profiles of known

organelle markers to assign protein–organelle membership.

The success of predictive multivariate analysis when applied

to the output of organelle proteomics is reliant upon (i) the

presence of sufficiently well-described phenotypes for orga-

nelles of interest within the data and (ii) the ability to

distinguish between, or resolve, these phenotypes across the

gradient employed. This work assumes the former and

examines the latter.

In eukaryotic systems, some organelles, including

nucleus, mitochondria and chloroplasts, are relatively easy

to obtain in a pure form, whereas many endomembrane

organelles are impossible to purify without considerable

contamination from other organelles with similar densities.
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Figure 1. Diagrams of the experimental schema of the common

approaches to determining sub-cellular location of organelle

proteins by proteomics approaches. The two approaches shown

in (A), LOPIT [12] and Protein Correlation Profiling [10], involve

partial separation of organelles by density centrifugation and

then assessment of the distribution patterns on thousands of

proteins among fractions from these gradients using quantita-

tive proteomics technologies. The approaches shown in (B)

involve the creation of highly enriched fractions of specific

organelles and comparison using proteomics of the enrichment

of groups of organelle specific proteins between these fractions

[5, 6, 7].
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Similarly, organelle resolution is limited by the gradients

applied during partial organelle separation as described

above. Present attempts at improving resolution over greater

numbers of organelles, towards proteome-wide protein

localisation studies, have focused upon an improved

approximation to gradient occupancy. For example, original

LOPIT methodologies employed four isotopes across four

distinct gradient fractions [14], but present methods either

employ dual use of four isotopes across eight fractions

(duplex method) or single use of a wider range of distinct

isotope labels, e.g. 6-plex TMT [16] or 8-plex iTRAQ tags [17].

Where the gradient formed results in the identical distri-

bution of organelles with different physical properties;

however, ever greater resolution of gradient occupancy will

not prevent the profiles of proteins from unresolved orga-

nelles having similar phenotypic appearance. Accordingly,

even the most sophisticated data analysis will result in

superimposition of such profiles and an inability to assign

accurately the associated proteins to their organelles.

Here, we present a simple alternative approach to

increase organelle resolution from gradient-based separa-

tion experiments. Rather than solely seeking to improve the

approximation of gradient occupancy, we suggest parallel

density centrifugation experiments on identical organelle

preparations, wherein the separation gradients employed

have distinct density distributions [13]. In a situation

wherein no single density condition will achieve optimum

resolution of organelles, each of several sufficiently different

gradients will resolve certain organelles more optimally than

others. Their combination, therefore, should resolve orga-

nelle-related profile subsets that are not fully resolved in any

individual experiment (cf. Fig. 2). We test this assertion via a

straightforward assessment of computational protein–orga-

nelle assignment on data from LOPIT experiments

performed on the same biological sample but using differ-

ent separation gradients. We demonstrate that combination

of LOPIT profiles obtained across distinct separation gradi-

ents has considerable potential to assist computational

protein–organelle assignment. Furthermore, we provide

also the first rigorous performance assessment of compu-

tational pattern recognition applied to this type of organelle

proteomics data and apply a powerful, contemporary tech-

nique to obtain protein–organelle associations.

Two Arabidopsis callus LOPIT data sets were collected as

described by Dunkley et al. (2006) and Sadowski et al. (2008)

[12, 13]. Each data set results from the application of a

different iodixanol equilibrium density gradient (cf. Fig. 3) to

identically prepared biological samples. The former employs a

shallower gradient than the latter, and the two experiments

are referred to hereon as shallow and steep, respectively.

The gradient occupancy profiles of both data sets

comprise two sets of isotope abundance measurements,

each taken from four distinct gradient fractions (duplex

experimental protocol), thereby yielding eight values per
profile. The proteins whose profiles are analysed here (i)

appear in both experiments and (ii) are annotated to one of

six organelles, as evidenced from annotation within the

TAIR8 database (http://www.arabidopsis.org/). The orga-

nelles present are endoplasmic reticulum (ER), plasma

membrane (PM), Golgi apparatus (GA), mitochondria (MT),

vacuole (VA) and plastids (PT). Organelle membership

frequencies are displayed in Table 1 and the organelle-

annotated profiles of both experiments are visualised by

multi-dimensional scaling [18] in Fig. 4, which suggests that

shallow and steep gradients resolve certain organelles better

than others. For example, profiles from the mitochondria

and plastids appear less similar in the steep gradient data

projection than they do in the shallow gradient data.

Conversely, the endoplasmic reticulum and vacuolar profiles

appear less similar in the shallow gradient data projection

than they do in that of the steep gradient. Interestingly, as

suggested in the introduction, the same visualisation of

profiles formed by a concatenation of corresponding shallow

and steep profiles appears to obviate these two cases and

would appear to suggest improved general resolution of all

organelles present.

To assess the effect of combining LOPIT data obtained

from different gradients, we implemented a straightforward

A B

Figure 2. Hypothetical principle component analysis of LOPIT data

from two different organelle separation conditions demonstrating

potential issues with co-separation of organelles with similar

physical properties selected for any given separation procedure. In

plot (A), the organelles represented by triangles and pink circles

are poorly resolved; in plot (B), the organelles represented by

triangles and pink circles are now more fully resolved at the

expense of the resolution of the organelles represented by blue

circles from that represented by triangles.
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Figure 3. The density profiles of the corresponding gradients

used in this study from Dunkley et al. (dashed line) and Sadowski

et al. (solid yellow line). The y-axis is refractive index (RI) in brix.
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assessment of computational protein–organelle association

when applied to (i) profiles obtained from the shallow

gradient, (ii) profiles obtained from the steep gradient and

(iii) profiles formed by concatenating corresponding shallow

and steep profiles. Successful protein–organelle association

was assessed as follows. For each data set, protein profiles

were split into stratified training (80%) and test (20%)

partitions, respectively, via uniform random sampling

without replacement from the profiles of each organelle (or

data class). Profiles were mapped to known organelle asso-

ciations (classifier creation) on the training partition and

performance of the mapping (estimated generalisation)

assessed by using the mapping to predict organelle asso-

ciations of profiles in the test partition. The partitioning was

repeated to create 100 independently selected partitions. The

same 100 partitions were employed across shallow, steep

and combined data sets.

The generalisation performance of protein–organelle

associations made by mappings learned from each training

partition was estimated using the category-averaged (or

macro) F1 measure [19] to assess predictions made when

mappings were applied to predict protein–organelle asso-

ciation on the corresponding test partition. The F1 measure

represents the harmonic mean of precision (ratio of correct

associations with a particular organelle to number of

profiles actually associated to that organelle) and recall (ratio

of correct associations with a particular organelle to all

associations made with that organelle). The macro-F1

measure, which has interval [0, 1], is the mean F1 measure

over all organelles present in the test data. The significance

of any observed differences in median estimated general-

isation performance across all 100 test partitions was

assessed using a paired Wilcoxon rank-sum test of median

equality [20].

Protein–organelle associations were obtained using a non-

linear support vector machine (SVM) classifier with radial

basis function (RBF) kernel function [21]. An SVM seeks to

separate the examples of distinct data classes via a hyperplane

(or hyperplanes) located at maximal distance to the examples

it separates, thereby often referred to as being a large-margin

classifier. Furthermore, exploitation of the ‘kernel trick’ –

whereby linear solutions are performed in a non-linear

transformation of the original data space – places it among a

group of learning algorithms known as kernel methods. The

SVM algorithm has become familiar across a wide range of

pattern recognition applications, owing primarily to its theo-

retically optimum learning strategy, robustness to noise and

high data cardinality, and ease of adaptation to non-linear

scenarios [22, 23]. The SVM classifier employed here is that

implemented in the kernlab package for the R statistical

programming environment (http://www.r-project.org). The

prediction of multiple classes was handled using the kernlab
implementation of a native multi-class SVM formulation [24].

On each training partition, the RBF kernel width was set

heuristically, as described by [25, 26], and the regularisation

parameter C selected according to macro-F1 performance

over a single round of stratified fivefold cross-validation [27].

Classifier training incorporated weights inversely propor-

tional to relative training class proportions so as to ensure

Table 1. Protein organelle membership frequencies

ER PM GA MT VA PT

Proteins 119 89 76 27 20 16
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Figure 4. Multi-dimensional

scaling plots of annotated

LOPIT profiles from shallow

(left), steep (centre) and

combined (right) gradients.

Inter-profile dissimilarity is

represented by Euclidean

distance. Plots represent

projection of multivariate

(eight-dimensional) LOPIT

profiles onto two dimen-

sions that most account for

the original inter-profile

dissimilarity.
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balanced classification performance, e.g. [28]. Additional

detail regarding experimental practice is available in

Supporting Information, along with tables of the LOPIT

profiles analysed.

The boxplot of Fig. 5 displays estimated generalisation

performance of protein–organelle associations over the data

partitioned as described above. The median macro-F1

performance of the SVM classification framework applied to

shallow, steep and combined gradient profiles was 0.917,

0.892 and 0.955, respectively. Over the 100 paired test data

partitions of each experiment, median estimated general-

isation performance on the combined gradient profiles was

significantly higher than that obtained on profiles obtained

solely from shallow (p 5 2.14e�14) or steep (po2.20e�16)

gradients. Mean F1 measure (and associated standard

deviation) for individual organelles are displayed in Table 2

for further detail. It is apparent that, as suggested by the

plots of Fig. 4, predictive performance on combined gradi-

ent profiles is similar to, or slightly higher than, the best

performance among single gradients.

Finally, our choice of base classifier in the above assess-

ment allows us to compare the potential benefit, albeit on a

relatively limited number of profiles covering relatively few

organelles, of applying a non-linear SVM with performance

obtained using PLSDA, as employed in several previous

LOPIT analyses. Accordingly, a PLSDA model implemented

via the caret package for R, with Bayesian classification

schema and number of components selected using leave-

one-out cross-validation on each training partition, was

applied to the assessment schema described above. The

outcome is described by the boxplot of Fig. 6 and confirms

slight but significant performance advantage of the non-

linear SVM. The median estimated generalisation perfor-

mance of PLSDA, in terms of macro-F1 measure across the

same 100 test partitions, is 0.896, 0.823 and 0.932 for shal-

low, steep and combined profiles, respectively. By compar-

ison, the figures reported above for the SVM are higher to a

significant extent (p 5 1.93e�4, po2.20e�16 and

p 5 1.33e�9, respectively). It is interesting, however, that

significant improvement in PLSDA performance is recorded

on the combined profiles when compared to shallow

(p 5 3.53e�7) and steep (po2.2e�16) profiles, which

suggests that the benefit of combining the distinct gradients

of our two experiments is not solely available via use of the

more sophisticated non-linear classifier.

We have assessed computational protein–organelle

association from organelle proteomics data in the circum-

stance wherein a single experiment is unable to fully resolve

the organelles present along a fractionation gradient. Our

experimental results suggest that there may be significant

benefit to protein–organelle association using our LOPIT

platform by combining localisation data obtained across

distinct gradients. To demonstrate this approach, we

implemented a rigorous analytical platform for the creation

and assessment of computational protein–organelle

mappings created from fractionation-based platforms.

Furthermore, we employed a powerful, contemporary

pattern recognition algorithm in order to create the protei-

n–organelle mappings reported.

Our approach to combination (or data fusion) of distinct

experimental outputs is simple (concatenation), but appears

highly effective in the scenario presented. Going forward,

there remains a need to develop the method, (i) in a manner

more sophisticated when confronted by an inevitable

increase in the number of different gradients, and therefore

data dimensionality, required in order to resolve a greater

number of organelles towards proteome-wide protei-

n–organelle association studies, and (ii) in a manner that

affords organelle association to proteins that do not appear

in every gradient employed.

The use of an SVM classifier, widely-reported as being

robust to relatively high data cardinality, to map multivariate

protein profiles to organelle memberships is already sympa-

thetic to the first challenge. Ultimately, however, increasingly

complex gradient representations suggest an eventual need for

classifier fusion, rather than data fusion. One can envisage an

ensemble of classifiers voting on protein–organelle member-

ship over the output of several distinct gradients (which could

also incorporate an approach to overcome the second challenge

of missing information from one or more gradients). Further

to this, a more integral approach to learning over the output of

several gradients could involve data fusion internal to a single

classifier. For example, the application of an SVM (or other

matrix-based classifier, such as k-nearest neighbour [29]) to a

combined kernel (or dissimilarity) matrix. The weighted

combination of multiple kernel matrices provided by the

Multiple Kernel Learning algorithm [30, 31] would appear well

suited to such an approach.

Returning to the need for greater organelle resolution, a

more complex aspect of protein–organelle association from
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Figure 5. Boxplots, displaying median and inter-quartile range of

estimated generalisation performance (macro-F1 measure) over

100 test partitions, for SVM applied to shallow, steep and

combined LOPIT profiles.
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gradient-based studies, which is not tackled here, is that of

multiple protein–organelle associations. For example, it is

reasonable to assume that proteins located simultaneously

in more than one organelle in a particular cellular condition

will have gradient abundance profiles that comprise a

weighted superimposition of multiple organelle profile

phenotypes. Analytically, this scenario may be overcome via
some form of deconvolution according to the organelle

phenotypes present or by probabilistic approaches to

protein–organelle mapping. Of potentially greater impor-

tance, however, are ensuing practical issues concerning the

ability of a single density gradient to not only resolve indi-

vidual organelles but to do so in a manner that distinguishes

the phenotypic profiles of single organelles from the

convoluted profiles that arise from multiple organelle resi-

dency. Clearly, the task of protein localisation via organelle

proteomics platforms provides immediate research chal-

lenges both practical and analytical.

Regardless of specific future approaches to improve

accuracy and resolution in current high-throughput protein

localisation platforms, the general theme should be to

develop current experimental and analytical protocols for a

growing need to investigate protein localisation simulta-

neously across the entire proteome in a variety of different

organisms, cell types and experimental conditions. Appli-

cation of robust, flexible algorithms, such as the non-linear

SVM employed here, to map protein gradient profiles to

organelle membership represents a good starting point. The

parallel development of present experimental protocols, for

example, the use of multiple gradients to resolve physically a

larger number of organelles, alongside refined analytical

practice promises practical, accurate and high-throughput

purification-free approaches to the proteome-wide assign-

ment of proteins to their sub-cellular locations.
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